Package index
-
abs(<value>) - Absolute value for value objects
-
anova(<femtofit>) - Analysis of variance for femtofit models
-
backward() - Generic function for the Backward pass for automatic differentiation (finds the gradient of every sub-node in the computational graph with respect to
e). In other words, it is responsible for computing the gradient with respect toe. -
backward(<default>) - Default implementation does not propagate gradients. For instance, if we have a constant, then the partial of the constant is not meaningful.
-
backward(<value>) - Backward pass for value objects
-
bfgs() - BFGS quasi-Newton optimizer
-
bootstrap - Bootstrap Inference
-
bootstrap_fit() - Bootstrap standard errors and confidence intervals
-
bounded() - Transform to bounded interval
-
check_convergence() - Check convergence diagnostics
-
check_hessian() - Check Hessian properties
-
compare() - Compare multiple fitted models
-
confint(<bootstrap_result>) - Confidence intervals from bootstrap
-
confint_mle() - Compute confidence intervals from MLE results
-
confint_profile() - Profile confidence intervals
-
cos(<value>) - Cosine function for value objects
-
diagnostics() - Model Diagnostics
-
digamma(<value>) - Digamma (psi) function for value objects
-
distributions - Log-likelihood functions for exponential family distributions
-
div_safe() - Safe division (handles division by zero)
-
dof() - Extract degrees of freedom from hypothesis test
-
`-`(<value>) - Subtraction for value objects
-
dual - dual R6 class for forward-mode automatic differentiation
-
dual_num() - Create a dual number
-
exp(<value>) - Exponential function for value objects
-
exp_safe() - Stable exp function (with overflow protection)
-
femtofit()coef(<femtofit>)vcov(<femtofit>)confint(<femtofit>)logLik(<femtofit>)nobs(<femtofit>)print(<femtofit>)summary(<femtofit>)print(<summary.femtofit>) - Constructor for femtofit objects
-
find_mle() - Find MLE with standard errors
-
fisher_information() - Compute observed Fisher information matrix
-
fisher_scoring() - Fisher scoring optimizer
-
fit() - Fit a model via maximum likelihood
-
fitting - Statistical model fitting with automatic differentiation
-
get_data()`get_data<-`() - Retrieve the data stored by an object
-
grad() - Gradient of
xwith respect toeinbackward(e), e.g., dx/de. (applies the chain rule) -
grad(<default>) - Default gradient is zero matrix
-
grad(<value>) - Gradient of a
valueobjectxwith respect toeinbackward(e), e.g., dx/de. (applies the chain rule) -
gradient() - Compute gradient as a numeric vector
-
gradient_ascent() - Gradient ascent/descent optimizer
-
gradient_descent() - Gradient descent (minimize)
-
hessian() - Compute Hessian matrix via forward-over-reverse automatic differentiation
-
hypothesis_tests - Hypothesis Testing for Fitted Models
-
inv_bounded() - Inverse of bounded transform
-
inv_positive() - Inverse of positive transform
-
inv_probability() - Inverse of probability transform
-
inverse_transforms - Inverse transforms for recovering original scale
-
is_dual() - Check if object is a dual number
-
is_significant_at() - Check if test is significant at given level
-
is_value() - Check if an object is of class value
-
lbfgs() - L-BFGS optimizer (limited memory BFGS)
-
lgamma(<value>) - Log-gamma function for value objects
-
line_search() - Backtracking line search (Armijo condition)
-
log(<value>) - Natural logarithm for value objects
-
log1p(<value>) - Log(1+x) for value objects
-
log1p_safe() - Log1p with underflow protection
-
log_safe() - Safe logarithm (handles zeros)
-
log_sigmoid() - Log-sigmoid (numerically stable)
-
logit() - Logit function for value objects
-
loglik_bernoulli() - Bernoulli distribution log-likelihood
-
loglik_beta() - Beta distribution log-likelihood
-
loglik_binomial() - Binomial distribution log-likelihood
-
loglik_exponential() - Exponential distribution log-likelihood
-
loglik_gamma() - Gamma distribution log-likelihood
-
loglik_logistic() - Logistic regression log-likelihood (binary)
-
loglik_negbinom() - Negative binomial log-likelihood
-
loglik_normal() - Normal (Gaussian) log-likelihood
-
loglik_pareto() - Pareto distribution log-likelihood
-
loglik_poisson() - Poisson distribution log-likelihood
-
loglik_weibull() - Weibull distribution log-likelihood
-
logsumexp() - Log-Sum-Exp (numerically stable)
-
lower_bounded() - Transform to lower-bounded interval
-
lrt() - Likelihood Ratio Test
-
mean(<value>) - Mean for value objects
-
newton_raphson() - Newton-Raphson optimizer
-
observed_info() - Observed Fisher information matrix
-
optimization - Optimization routines for maximum likelihood estimation
-
plot(<profile_likelihood>) - Plot profile likelihood
-
`+`(<value>) - Addition for value objects
-
positive() - Transform to positive values
-
`^`(<value>) - Power operation for value objects.
-
predict(<femtofit>) - Predictions from a fitted model
-
primal() - Extract primal from dual or return value unchanged
-
print(<anova.femtofit>) - Print anova table for femtofit
-
print(<bootstrap_result>) - Print method for bootstrap results
-
print(<hessian_check>)print(<convergence_check>)print(<model_diagnostics>) - Print methods for diagnostic objects
-
print(<likelihood_ratio_test>) - Print method for likelihood ratio test
-
print(<model_comparison>) - Print model comparison
-
print(<profile_likelihood>) - Print method for profile likelihood
-
print(<value>) - Print value object and its computational graph
-
print(<wald_test>) - Print method for Wald test
-
probability() - Transform to probability values
-
profile_likelihood - Profile Likelihood
-
profile_loglik() - Compute profile likelihood for a parameter
-
pval() - Extract p-value from hypothesis test
-
relu() - ReLU activation function for value objects
-
se() - Standard errors from a fitted model
-
se_reliable() - Check if standard errors are reliable
-
sigmoid() - Sigmoid activation function for value objects
-
sigmoid_stable() - Stable sigmoid function
-
sin(<value>) - Sine function for value objects
-
`/`(<value>) - Division for value objects
-
softmax() - Softmax function (numerically stable)
-
softplus() - Softplus function for value objects
-
sqrt(<value>) - Square root for value objects
-
stability - Numerical stability utilities for automatic differentiation
-
std_errors() - Compute standard errors from Hessian
-
sum(<dual>) - Sum for dual numbers
-
sum(<value>) - Summation for value objects
-
summary(<bootstrap_result>) - Summary for bootstrap results
-
tangent() - Extract tangent from dual or return 0
-
tanh(<value>) - Hyperbolic tangent for value objects
-
test_stat() - Extract test statistic from hypothesis test
-
`*`(<value>) - Multiplication for value objects
-
transforms - Parameter Transformation Helpers
-
trigamma(<value>) - Trigamma function for value objects
-
upper_bounded() - Transform to upper-bounded interval
-
val() valueobject constructor-
value - value R6 class
-
vcov_matrix() - Compute variance-covariance matrix from Hessian
-
wald_test() - Wald Test for Model Parameters
-
zero_grad() - Reset gradients to zero