Skip to contents

All functions

abs(<value>)
Absolute value for value objects
anova(<femtofit>)
Analysis of variance for femtofit models
backward()
Generic function for the Backward pass for automatic differentiation (finds the gradient of every sub-node in the computational graph with respect to e). In other words, it is responsible for computing the gradient with respect to e.
backward(<default>)
Default implementation does not propagate gradients. For instance, if we have a constant, then the partial of the constant is not meaningful.
backward(<value>)
Backward pass for value objects
bfgs()
BFGS quasi-Newton optimizer
bootstrap
Bootstrap Inference
bootstrap_fit()
Bootstrap standard errors and confidence intervals
bounded()
Transform to bounded interval
check_convergence()
Check convergence diagnostics
check_hessian()
Check Hessian properties
compare()
Compare multiple fitted models
confint(<bootstrap_result>)
Confidence intervals from bootstrap
confint_mle()
Compute confidence intervals from MLE results
confint_profile()
Profile confidence intervals
cos(<value>)
Cosine function for value objects
diagnostics()
Model Diagnostics
digamma(<value>)
Digamma (psi) function for value objects
distributions
Log-likelihood functions for exponential family distributions
div_safe()
Safe division (handles division by zero)
dof()
Extract degrees of freedom from hypothesis test
`-`(<value>)
Subtraction for value objects
dual
dual R6 class for forward-mode automatic differentiation
dual_num()
Create a dual number
exp(<value>)
Exponential function for value objects
exp_safe()
Stable exp function (with overflow protection)
femtofit() coef(<femtofit>) vcov(<femtofit>) confint(<femtofit>) logLik(<femtofit>) nobs(<femtofit>) print(<femtofit>) summary(<femtofit>) print(<summary.femtofit>)
Constructor for femtofit objects
find_mle()
Find MLE with standard errors
fisher_information()
Compute observed Fisher information matrix
fisher_scoring()
Fisher scoring optimizer
fit()
Fit a model via maximum likelihood
fitting
Statistical model fitting with automatic differentiation
get_data() `get_data<-`()
Retrieve the data stored by an object
grad()
Gradient of x with respect to e in backward(e), e.g., dx/de. (applies the chain rule)
grad(<default>)
Default gradient is zero matrix
grad(<value>)
Gradient of a value object x with respect to e in backward(e), e.g., dx/de. (applies the chain rule)
gradient()
Compute gradient as a numeric vector
gradient_ascent()
Gradient ascent/descent optimizer
gradient_descent()
Gradient descent (minimize)
hessian()
Compute Hessian matrix via forward-over-reverse automatic differentiation
hypothesis_tests
Hypothesis Testing for Fitted Models
inv_bounded()
Inverse of bounded transform
inv_positive()
Inverse of positive transform
inv_probability()
Inverse of probability transform
inverse_transforms
Inverse transforms for recovering original scale
is_dual()
Check if object is a dual number
is_significant_at()
Check if test is significant at given level
is_value()
Check if an object is of class value
lbfgs()
L-BFGS optimizer (limited memory BFGS)
lgamma(<value>)
Log-gamma function for value objects
line_search()
Backtracking line search (Armijo condition)
log(<value>)
Natural logarithm for value objects
log1p(<value>)
Log(1+x) for value objects
log1p_safe()
Log1p with underflow protection
log_safe()
Safe logarithm (handles zeros)
log_sigmoid()
Log-sigmoid (numerically stable)
logit()
Logit function for value objects
loglik_bernoulli()
Bernoulli distribution log-likelihood
loglik_beta()
Beta distribution log-likelihood
loglik_binomial()
Binomial distribution log-likelihood
loglik_exponential()
Exponential distribution log-likelihood
loglik_gamma()
Gamma distribution log-likelihood
loglik_logistic()
Logistic regression log-likelihood (binary)
loglik_negbinom()
Negative binomial log-likelihood
loglik_normal()
Normal (Gaussian) log-likelihood
loglik_pareto()
Pareto distribution log-likelihood
loglik_poisson()
Poisson distribution log-likelihood
loglik_weibull()
Weibull distribution log-likelihood
logsumexp()
Log-Sum-Exp (numerically stable)
lower_bounded()
Transform to lower-bounded interval
lrt()
Likelihood Ratio Test
mean(<value>)
Mean for value objects
newton_raphson()
Newton-Raphson optimizer
observed_info()
Observed Fisher information matrix
optimization
Optimization routines for maximum likelihood estimation
plot(<profile_likelihood>)
Plot profile likelihood
`+`(<value>)
Addition for value objects
positive()
Transform to positive values
`^`(<value>)
Power operation for value objects.
predict(<femtofit>)
Predictions from a fitted model
primal()
Extract primal from dual or return value unchanged
print(<anova.femtofit>)
Print anova table for femtofit
print(<bootstrap_result>)
Print method for bootstrap results
print(<hessian_check>) print(<convergence_check>) print(<model_diagnostics>)
Print methods for diagnostic objects
print(<likelihood_ratio_test>)
Print method for likelihood ratio test
print(<model_comparison>)
Print model comparison
print(<profile_likelihood>)
Print method for profile likelihood
print(<value>)
Print value object and its computational graph
print(<wald_test>)
Print method for Wald test
probability()
Transform to probability values
profile_likelihood
Profile Likelihood
profile_loglik()
Compute profile likelihood for a parameter
pval()
Extract p-value from hypothesis test
relu()
ReLU activation function for value objects
se()
Standard errors from a fitted model
se_reliable()
Check if standard errors are reliable
sigmoid()
Sigmoid activation function for value objects
sigmoid_stable()
Stable sigmoid function
sin(<value>)
Sine function for value objects
`/`(<value>)
Division for value objects
softmax()
Softmax function (numerically stable)
softplus()
Softplus function for value objects
sqrt(<value>)
Square root for value objects
stability
Numerical stability utilities for automatic differentiation
std_errors()
Compute standard errors from Hessian
sum(<dual>)
Sum for dual numbers
sum(<value>)
Summation for value objects
summary(<bootstrap_result>)
Summary for bootstrap results
tangent()
Extract tangent from dual or return 0
tanh(<value>)
Hyperbolic tangent for value objects
test_stat()
Extract test statistic from hypothesis test
`*`(<value>)
Multiplication for value objects
transforms
Parameter Transformation Helpers
trigamma(<value>)
Trigamma function for value objects
upper_bounded()
Transform to upper-bounded interval
val()
value object constructor
value
value R6 class
vcov_matrix()
Compute variance-covariance matrix from Hessian
wald_test()
Wald Test for Model Parameters
zero_grad()
Reset gradients to zero