Package index
-
abs(<value>) - Absolute value for value objects
-
backward() - Generic function for the Backward pass for automatic differentiation (finds the gradient of every sub-node in the computational graph with respect to
e). In other words, it is responsible for computing the gradient with respect toe. -
backward(<default>) - Default implementation does not propagate gradients. For instance, if we have a constant, then the partial of the constant is not meaningful.
-
backward(<value>) - Backward pass for value objects
-
confint_mle() - Compute confidence intervals from MLE results
-
cos(<value>) - Cosine function for value objects
-
`data<-`() - Set the data of a value object
-
x - Retrieve the data stored by an object.
-
data(<default>) - Default implementation for retrieving the data from a differentiable object
-
data(<value>) - Retrieve the value or data from a value object
-
digamma(<value>) - Digamma (psi) function for value objects
-
distributions - Log-likelihood functions for exponential family distributions
-
`-`(<value>) - Subtraction for value objects
-
dual - dual R6 class for forward-mode automatic differentiation
-
dual_num() - Create a dual number
-
exp(<value>) - Exponential function for value objects
-
find_mle() - Find MLE with standard errors
-
fisher_information() - Compute observed Fisher information matrix
-
fisher_scoring() - Fisher scoring optimizer
-
grad() - Gradient of
xwith respect toeinbackward(e), e.g., dx/de. (applies the chain rule) -
grad(<default>) - Default gradient is one that does not propograte gradients and is zero.
valueobjectxwith respect toeinbackward(e), e.g., dx/de. (applies the chain rule) -
grad(<value>) - Gradient of a
valueobjectxwith respect toeinbackward(e), e.g., dx/de. (applies the chain rule) -
gradient() - Compute gradient as a numeric vector
-
gradient_ascent() - Gradient ascent/descent optimizer
-
gradient_descent() - Gradient descent (minimize)
-
hessian() - Compute Hessian matrix via forward-over-reverse automatic differentiation
-
is_dual() - Check if object is a dual number
-
is_value() - Check if an object is of class value
-
lgamma(<value>) - Log-gamma function for value objects
-
log(<value>) - Natural logarithm for value objects
-
log1p(<value>) - Log(1+x) for value objects
-
logit() - Logit function for value objects
-
loglik_bernoulli() - Bernoulli distribution log-likelihood
-
loglik_beta() - Beta distribution log-likelihood
-
loglik_binomial() - Binomial distribution log-likelihood
-
loglik_exponential() - Exponential distribution log-likelihood
-
loglik_gamma() - Gamma distribution log-likelihood
-
loglik_logistic() - Logistic regression log-likelihood (binary)
-
loglik_negbinom() - Negative binomial log-likelihood
-
loglik_normal() - Normal (Gaussian) log-likelihood
-
loglik_poisson() - Poisson distribution log-likelihood
-
mean(<value>) - Mean for value objects
-
newton_raphson() - Newton-Raphson optimizer
-
optimization - Optimization routines for maximum likelihood estimation
-
`+`(<value>) - Addition for value objects
-
`^`(<value>) - Power operation for value objects.
-
primal() - Extract primal from dual or return value unchanged
-
print(<value>) - Print value object and its computational graph
-
relu() - ReLU (Rectified Linear Unit) activation function for value objects
-
sigmoid() - Sigmoid activation function for value objects
-
sin(<value>) - Sine function for value objects
-
`/`(<value>) - Division for value objects
-
softplus() - Softplus function for value objects
-
sqrt(<value>) - Square root for value objects
-
std_errors() - Compute standard errors from Hessian
-
sum(<dual>) - Sum for dual numbers
-
sum(<value>) - Summation for value objects
-
tangent() - Extract tangent from dual or return 0
-
tanh(<value>) - Hyperbolic tangent activation function for value objects
-
`*`(<value>) - Multiplication for value objects
-
trigamma(<value>) - Trigamma function for value objects
-
val() valueobject constructor-
value - value R6 class
-
vcov_matrix() - Compute variance-covariance matrix from Hessian
-
wald_test() - Wald test for hypothesis testing