Skip to contents

Computes the log-likelihood for i.i.d. Weibull observations. L(k, λ | x) = nlog(k) - nk*log(λ) + (k-1)*Σlog(xᵢ) - Σ(xᵢ/λ)^k

Usage

loglik_weibull(shape, scale, x)

Arguments

shape

Shape parameter k (value object), must be positive

scale

Scale parameter λ (value object), must be positive

x

Numeric vector of observations (must be positive)

Value

A value object representing the log-likelihood

Details

The Weibull distribution is commonly used in survival analysis and reliability engineering. It generalizes the exponential distribution (k=1 gives exponential with rate 1/λ).

Examples

if (FALSE) { # \dontrun{
x <- rweibull(100, shape = 2, scale = 3)

# Using log-parameterization for positivity
result <- fit(
  function(log_shape, log_scale) {
    shape <- exp(log_shape)
    scale <- exp(log_scale)
    loglik_weibull(shape, scale, x)
  },
  params = c(log_shape = 0, log_scale = 0)
)
} # }