Gradient descent (minimize)
gradient_descent.RdConvenience wrapper for gradient_ascent with maximize=FALSE.
Usage
gradient_descent(
objective_fn,
params,
lr = 0.01,
max_iter = 1000,
tol = 1e-06,
grad_clip = NULL,
verbose = 0
)Arguments
- objective_fn
Function taking list of value parameters, returns scalar
- params
List of value objects (initial parameter values)
- lr
Learning rate (step size), default 0.01
- max_iter
Maximum iterations, default 1000
- tol
Convergence tolerance on gradient norm, default 1e-6
- grad_clip
Maximum gradient norm (NULL for no clipping)
- verbose
Print progress every N iterations (0 for silent)