Case Studies: MLE for Common Distributions
Alexander Towell
2025-12-17
Source:vignettes/case-studies.Rmd
case-studies.RmdIntroduction
This vignette demonstrates using compositional.mle to
fit various probability distributions to data. Each case study
shows:
- Problem definition with
mle_problem() - Composable solver strategies
- Comparison with analytical solutions
Case Study 1: Exponential Distribution
The exponential distribution has one parameter: rate .
# Generate data
n <- 100
true_rate <- 2.5
x_exp <- rexp(n, rate = true_rate)
# Define the problem
problem_exp <- mle_problem(
loglike = function(lambda) {
if (lambda <= 0) return(-Inf)
n * log(lambda) - lambda * sum(x_exp)
},
score = function(lambda) n / lambda - sum(x_exp),
constraint = mle_constraint(
support = function(lambda) lambda > 0,
project = function(lambda) max(lambda, 1e-8)
)
)
# Solve
result_exp <- gradient_ascent(max_iter = 50)(problem_exp, theta0 = 1)
# Compare with analytical MLE: 1/mean(x)
mle_analytical <- 1 / mean(x_exp)
cat("Numerical MLE: ", round(result_exp$theta.hat, 4), "\n")
#> Numerical MLE: 2.2236
cat("Analytical MLE: ", round(mle_analytical, 4), "\n")
#> Analytical MLE: 2.2236
cat("True rate: ", true_rate, "\n")
#> True rate: 2.5
lambda_grid <- seq(0.1, 5, length.out = 100)
ll_values <- sapply(lambda_grid, problem_exp$loglike)
plot(lambda_grid, ll_values, type = "l", lwd = 2,
xlab = expression(lambda), ylab = "Log-likelihood",
main = "Exponential Distribution Log-Likelihood")
abline(v = result_exp$theta.hat, col = "red", lwd = 2, lty = 2)
abline(v = true_rate, col = "blue", lwd = 2, lty = 3)
legend("topright", c("MLE", "True"), col = c("red", "blue"), lty = c(2, 3), lwd = 2)
Case Study 2: Gamma Distribution
Two parameters: shape and rate .
# Generate data
true_shape <- 3
true_rate <- 2
x_gamma <- rgamma(200, shape = true_shape, rate = true_rate)
# Define the problem
problem_gamma <- mle_problem(
loglike = function(theta) {
alpha <- theta[1]; beta <- theta[2]
if (alpha <= 0 || beta <= 0) return(-Inf)
n <- length(x_gamma)
n * (alpha * log(beta) - lgamma(alpha)) +
(alpha - 1) * sum(log(x_gamma)) - beta * sum(x_gamma)
},
score = function(theta) {
alpha <- theta[1]; beta <- theta[2]
n <- length(x_gamma)
c(n * (log(beta) - digamma(alpha)) + sum(log(x_gamma)),
n * alpha / beta - sum(x_gamma))
},
constraint = mle_constraint(
support = function(theta) all(theta > 0),
project = function(theta) pmax(theta, 1e-6)
),
theta_names = c("alpha", "beta")
)Composing Solvers: Grid Search + Gradient Ascent
# Coarse-to-fine strategy
strategy <- grid_search(lower = c(0.5, 0.5), upper = c(10, 10), n = 10) %>>%
gradient_ascent(max_iter = 100)
result_gamma <- strategy(problem_gamma, theta0 = c(1, 1))
cat("MLE: shape =", round(result_gamma$theta.hat[1], 4),
" rate =", round(result_gamma$theta.hat[2], 4), "\n")
#> MLE: shape = 2.6662 rate = 1.852
cat("True: shape =", true_shape, " rate =", true_rate, "\n")
#> True: shape = 3 rate = 2
alpha_grid <- seq(1, 6, length.out = 50)
beta_grid <- seq(0.5, 4, length.out = 50)
ll_gamma <- outer(alpha_grid, beta_grid, function(a, b) {
mapply(function(ai, bi) problem_gamma$loglike(c(ai, bi)), a, b)
})
contour(alpha_grid, beta_grid, ll_gamma, nlevels = 20,
xlab = expression(alpha ~ "(shape)"),
ylab = expression(beta ~ "(rate)"),
main = "Gamma Distribution Log-Likelihood")
points(result_gamma$theta.hat[1], result_gamma$theta.hat[2],
pch = 19, col = "red", cex = 1.5)
points(true_shape, true_rate, pch = 4, col = "blue", cex = 1.5, lwd = 2)
legend("topright", c("MLE", "True"), pch = c(19, 4), col = c("red", "blue"))
Case Study 3: Beta Distribution
Shape parameters and for data on .
# Generate data
true_alpha <- 2
true_beta <- 5
x_beta <- rbeta(150, shape1 = true_alpha, shape2 = true_beta)
# Define the problem
problem_beta <- mle_problem(
loglike = function(theta) {
a <- theta[1]; b <- theta[2]
if (a <= 0 || b <= 0) return(-Inf)
n <- length(x_beta)
n * (lgamma(a + b) - lgamma(a) - lgamma(b)) +
(a - 1) * sum(log(x_beta)) + (b - 1) * sum(log(1 - x_beta))
},
score = function(theta) {
a <- theta[1]; b <- theta[2]
n <- length(x_beta)
psi_ab <- digamma(a + b)
c(n * (psi_ab - digamma(a)) + sum(log(x_beta)),
n * (psi_ab - digamma(b)) + sum(log(1 - x_beta)))
},
constraint = mle_constraint(
support = function(theta) all(theta > 0),
project = function(theta) pmax(theta, 1e-6)
)
)
# Method of moments for starting values
m <- mean(x_beta); v <- var(x_beta)
alpha_start <- m * (m * (1 - m) / v - 1)
beta_start <- (1 - m) * (m * (1 - m) / v - 1)
result_beta <- gradient_ascent(max_iter = 200)(
problem_beta,
theta0 = c(max(alpha_start, 0.5), max(beta_start, 0.5))
)
cat("MLE: alpha =", round(result_beta$theta.hat[1], 4),
" beta =", round(result_beta$theta.hat[2], 4), "\n")
#> MLE: alpha = 1.6398 beta = 4.3577
cat("True: alpha =", true_alpha, " beta =", true_beta, "\n")
#> True: alpha = 2 beta = 5
hist(x_beta, breaks = 20, freq = FALSE, col = "lightgray",
main = "Beta Distribution Fit", xlab = "x")
curve(dbeta(x, result_beta$theta.hat[1], result_beta$theta.hat[2]),
add = TRUE, col = "red", lwd = 2)
curve(dbeta(x, true_alpha, true_beta), add = TRUE, col = "blue", lwd = 2, lty = 2)
legend("topright", c("Fitted", "True"), col = c("red", "blue"), lwd = 2, lty = c(1, 2))
Case Study 4: Weibull Distribution
Shape and scale , using Newton-Raphson.
# Generate data
true_k <- 2; true_lambda <- 3
x_weibull <- rweibull(100, shape = true_k, scale = true_lambda)
# Define the problem (score only, Fisher computed numerically)
problem_weibull <- mle_problem(
loglike = function(theta) {
k <- theta[1]; lambda <- theta[2]
if (k <= 0 || lambda <= 0) return(-Inf)
n <- length(x_weibull)
n * log(k) - n * k * log(lambda) +
(k - 1) * sum(log(x_weibull)) - sum((x_weibull / lambda)^k)
},
score = function(theta) {
k <- theta[1]; lambda <- theta[2]
n <- length(x_weibull)
x_scaled <- x_weibull / lambda
x_scaled_k <- x_scaled^k
c(n / k - n * log(lambda) + sum(log(x_weibull)) - sum(x_scaled_k * log(x_scaled)),
-n * k / lambda + k * sum(x_scaled_k) / lambda)
},
constraint = mle_constraint(
support = function(theta) all(theta > 0),
project = function(theta) pmax(theta, 1e-6)
)
)
# Newton-Raphson with numerical Fisher
result_weibull <- newton_raphson(max_iter = 50)(problem_weibull, theta0 = c(1, 1))
cat("MLE: shape =", round(result_weibull$theta.hat[1], 4),
" scale =", round(result_weibull$theta.hat[2], 4), "\n")
#> MLE: shape = 2.0466 scale = 2.8588
cat("True: shape =", true_k, " scale =", true_lambda, "\n")
#> True: shape = 2 scale = 3
hist(x_weibull, breaks = 15, freq = FALSE, col = "lightgray",
main = "Weibull Distribution Fit", xlab = "x")
curve(dweibull(x, shape = result_weibull$theta.hat[1],
scale = result_weibull$theta.hat[2]),
add = TRUE, col = "red", lwd = 2)
curve(dweibull(x, shape = true_k, scale = true_lambda),
add = TRUE, col = "blue", lwd = 2, lty = 2)
legend("topright", c("Fitted", "True"), col = c("red", "blue"), lwd = 2, lty = c(1, 2))
Case Study 5: Mixture of Normals
Multimodal likelihood requires good initialization and restarts.
# Generate mixture data
n1 <- 60; n2 <- 40
x_mix <- c(rnorm(n1, mean = 0, sd = 1), rnorm(n2, mean = 4, sd = 1.5))
# Parameters: (mu1, sigma1, mu2, sigma2, pi)
problem_mix <- mle_problem(
loglike = function(theta) {
mu1 <- theta[1]; s1 <- theta[2]
mu2 <- theta[3]; s2 <- theta[4]
pi1 <- theta[5]
if (s1 <= 0 || s2 <= 0 || pi1 <= 0 || pi1 >= 1) return(-Inf)
# Log-sum-exp for numerical stability
log_p1 <- log(pi1) + dnorm(x_mix, mu1, s1, log = TRUE)
log_p2 <- log(1 - pi1) + dnorm(x_mix, mu2, s2, log = TRUE)
log_max <- pmax(log_p1, log_p2)
sum(log_max + log(exp(log_p1 - log_max) + exp(log_p2 - log_max)))
},
constraint = mle_constraint(
support = function(theta) theta[2] > 0 && theta[4] > 0 && theta[5] > 0 && theta[5] < 1,
project = function(theta) c(theta[1], max(theta[2], 0.1), theta[3],
max(theta[4], 0.1), min(max(theta[5], 0.01), 0.99))
)
)
# Use k-means for initialization
km <- kmeans(x_mix, centers = 2)
mu1_init <- min(km$centers); mu2_init <- max(km$centers)
s1_init <- sd(x_mix[km$cluster == which.min(km$centers)])
s2_init <- sd(x_mix[km$cluster == which.max(km$centers)])
pi_init <- mean(km$cluster == which.min(km$centers))
result_mix <- gradient_ascent(learning_rate = 0.5, max_iter = 300)(
problem_mix,
theta0 = c(mu1_init, s1_init, mu2_init, s2_init, pi_init)
)
cat("Fitted:\n")
#> Fitted:
cat(" Component 1: mu =", round(result_mix$theta.hat[1], 2),
" sigma =", round(result_mix$theta.hat[2], 2), "\n")
#> Component 1: mu = -0.13 sigma = 0.9
cat(" Component 2: mu =", round(result_mix$theta.hat[3], 2),
" sigma =", round(result_mix$theta.hat[4], 2), "\n")
#> Component 2: mu = 4.18 sigma = 1.53
cat(" Mixing proportion:", round(result_mix$theta.hat[5], 2), "\n")
#> Mixing proportion: 0.58
hist(x_mix, breaks = 25, freq = FALSE, col = "lightgray",
main = "Gaussian Mixture Fit", xlab = "x")
x_seq <- seq(min(x_mix) - 1, max(x_mix) + 1, length.out = 200)
fitted_density <- result_mix$theta.hat[5] *
dnorm(x_seq, result_mix$theta.hat[1], result_mix$theta.hat[2]) +
(1 - result_mix$theta.hat[5]) *
dnorm(x_seq, result_mix$theta.hat[3], result_mix$theta.hat[4])
lines(x_seq, fitted_density, col = "red", lwd = 2)
true_density <- (n1/(n1+n2)) * dnorm(x_seq, 0, 1) + (n2/(n1+n2)) * dnorm(x_seq, 4, 1.5)
lines(x_seq, true_density, col = "blue", lwd = 2, lty = 2)
legend("topright", c("Fitted", "True"), col = c("red", "blue"), lwd = 2, lty = c(1, 2))
Summary
| Distribution | Strategy | Key Considerations |
|---|---|---|
| Exponential | gradient_ascent() |
Simple, single parameter |
| Gamma | grid_search() %>>% gradient_ascent() |
Coarse-to-fine for 2D |
| Beta |
gradient_ascent() with method of moments init |
Good starting values |
| Weibull | newton_raphson() |
Second-order convergence |
| Mixture |
gradient_ascent() with k-means init |
Multimodal likelihood |
Key takeaways:
-
Separate problem from solver -
mle_problem()encapsulates the model -
Compose strategies - Use
%>>%for coarse-to-fine optimization - Use constraints - Keep parameters in valid ranges
- Good initialization - Critical for multimodal problems