Creates a solver that uses gradient ascent (steepest ascent) to find the MLE. Optionally uses backtracking line search for adaptive step sizes.
Usage
gradient_ascent(
learning_rate = 1,
line_search = TRUE,
max_iter = 100L,
tol = 1e-08,
backtrack_ratio = 0.5,
min_step = 1e-12
)Arguments
- learning_rate
Base learning rate / maximum step size
- line_search
Use backtracking line search for adaptive step sizes
- max_iter
Maximum number of iterations
- tol
Convergence tolerance (on parameter change)
- backtrack_ratio
Step size reduction factor for line search (0 < r < 1)
- min_step
Minimum step size before giving up