Function reference
-
is_converged()
- is_converged
-
is_mle_numerical()
- is_mle_numerical
-
mle_gradient_ascent()
- mle_gradient_ascent
-
mle_grid_search()
- mle_grid_search
-
mle_local_search()
- mle_local_search
-
mle_newton_raphson()
- mle_newton_raphson
-
mle_numerical()
- mle_numerical
-
mle_optim()
- mle_optim
-
mle_random_restart()
- mle_random_restart
-
mle_random_search()
- mle_random_search
-
mle_sim_anneal()
- mle_sim_anneal
-
mle_solve()
- mle_solve
-
num_iterations()
- num_iterations
-
numerical.mle
- `numerical.mle`: A package for numerically solving maximum likelihood estimators from log-likelihood functions.
-
penalize_loglike()
- loglikelihood constructor penalizes
-
sim_anneal()
- sim_anneal
-
stochastic_loglike()
- stochastic loglikelihood constructor good for large datasets. if applied to a gradient ascent method, this will perform stochastic gradient ascent.
-
subdivide_region()
- subdivide_region