Skip to contents

Configuration

Create configuration objects for optimization algorithms

mle_config()
Create optimization configuration
mle_config_gradient()
Create gradient-based optimization configuration
mle_config_linesearch()
Create line search configuration
mle_constraint()
Create domain constraint specification
is_mle_config()
Check if object is an mle_config
is_mle_constraint()
Check if object is an mle_constraint

Core Solvers

Main optimization algorithms

mle_gradient_ascent()
Maximum likelihood estimation via gradient ascent
mle_newton_raphson()
Maximum likelihood estimation via Newton-Raphson

Meta-Solvers

Global optimization strategies

mle_grid_search()
MLE via grid search
mle_random_restart()
MLE via random restarts

Convenience Wrappers

Quick access to solvers with sensible defaults

mle_grad()
Quick gradient ascent with sensible defaults
mle_nr()
Quick Newton-Raphson with sensible defaults
with_constraint()
Quick constrained optimization

Function Transformers

Transform log-likelihood functions

with_subsampling()
Create stochastic log-likelihood with subsampling
with_penalty()
Add penalty term to log-likelihood
penalty_l1()
L1 penalty function (LASSO)
penalty_l2()
L2 penalty function (Ridge)
penalty_elastic_net()
Elastic net penalty (combination of L1 and L2)
compose()
Compose multiple function transformations

Generic Methods

Methods for mle_numerical objects

is_converged()
is_converged
is_mle_numerical()
is_mle_numerical
num_iterations()
num_iterations
mle_numerical()
mle_numerical

Package

Package documentation

numerical.mle-package numerical.mle
`numerical.mle`: A package for numerically solving maximum likelihood estimators from log-likelihood functions.