Skip to contents

All functions

is_converged()
is_converged
is_mle_numerical()
is_mle_numerical
mle_gradient_ascent()
mle_gradient_ascent
mle_grid_search()
mle_grid_search
mle_local_search()
mle_local_search
mle_newton_raphson()
mle_newton_raphson
mle_numerical()
mle_numerical
mle_optim()
mle_optim
mle_random_restart()
mle_random_restart
mle_random_search()
mle_random_search
mle_sim_anneal()
mle_sim_anneal
mle_solve()
mle_solve
num_iterations()
num_iterations
numerical.mle
`numerical.mle`: A package for numerically solving maximum likelihood estimators from log-likelihood functions.
penalize_loglike()
loglikelihood constructor penalizes
sim_anneal()
sim_anneal
stochastic_loglike()
stochastic loglikelihood constructor good for large datasets. if applied to a gradient ascent method, this will perform stochastic gradient ascent.
subdivide_region()
subdivide_region