Function reference
-
is_converged() - is_converged
-
is_mle_numerical() - is_mle_numerical
-
mle_gradient_ascent() - mle_gradient_ascent
-
mle_grid_search() - mle_grid_search
-
mle_local_search() - mle_local_search
-
mle_newton_raphson() - mle_newton_raphson
-
mle_numerical() - mle_numerical
-
mle_optim() - mle_optim
-
mle_random_restart() - mle_random_restart
-
mle_random_search() - mle_random_search
-
mle_sim_anneal() - mle_sim_anneal
-
mle_solve() - mle_solve
-
num_iterations() - num_iterations
-
numerical.mle - `numerical.mle`: A package for numerically solving maximum likelihood estimators from log-likelihood functions.
-
penalize_loglike() - loglikelihood constructor penalizes
-
sim_anneal() - sim_anneal
-
stochastic_loglike() - stochastic loglikelihood constructor good for large datasets. if applied to a gradient ascent method, this will perform stochastic gradient ascent.
-
subdivide_region() - subdivide_region