guo_weibull_series_table_2.Rd
The source of this data set comes from "Estimating Component Reliabilities from Incomplete System Failure Data", Table 2: Example Data for a Series System.
guo_weibull_series_table_2
A data frame with 30 rows and 4 columns:
number, lifetime of series system
logical, TRUE indicates component 1 is in the candidate set, FALSE otherwise
logical, TRUE indicates component 2 is in the candidate set, FALSE otherwise
logical, TRUE indicates component 3 is in the candidate set, FALSE otherwise
logical, Right-censoring indicator, TRUE if the system is observed
H. Guo, F. Szidarovszky, and P. Niu, "Estimating component reliabilities from incomplete system failure data," in 2013 Proceedings Annual Reliability and Maintainability Symposium (RAMS), 2013. Online. Available: https://doi.org/10.1109/rams.2013.6517765
When you use likelihood model that assumes a Weibull series system and candidate sets represented by Boolean vectors (x1, x2, x3) that satisfy conditions C1, C2, and C3, the MLE of the shape and scale parameters are:
β1 = 1.2576
η1 = 994.3661
β2 = 1.1635
η2 = 908.9458
β3 = 1.1308
η3 = 840.1141
θ̂ = (β1, η1, β2, η2, β3, η3)
This has a log-likelihood of -228.6851.
head(guo_weibull_series_md)
#> $mle
#> [1] 1.2576 994.3661 1.1635 908.9458 1.1308 840.1141
#>
#> $shape_mles
#> [1] 1.2576 1.1635 1.1308
#>
#> $scale_mles
#> [1] 994.3661 908.9458 840.1141
#>
#> $loglike
#> [1] -228.6851
#>
#> $p_hat
#> [1] 0.215
#>
#> $tau
#> [1] Inf
#>
sol <- optim(par = guo_weibull_series_md$mle,
fn = loglik_wei_series_md_c1_c2_c3,
hessian = TRUE,
control = list(fnscale = -1,
parscale = c(1, 1000, 1, 1000, 1, 1000)),
df = guo_weibull_series_md$data)
abs(sol$value - guo_weibull_series_md$loglike) < 1e-4
#> [1] TRUE
abs(sol$par - guo_weibull_series_md$mle) < 1e-4
#> [1] TRUE TRUE TRUE TRUE TRUE TRUE