Rate-distorted cryptographic perfect hash functions

A theoretical analysis on space efficiency, time complexity, and entropy

Alexander Towell
lex@metafunctor.com

Abstract

We analyze a theoretical perfect hash function that has three desirable properties: (1) it
is a cryptographic hash function; (2) its in-place encoding obtains the theoretical lower-bound
for the expected space complexity; and (3) its in-place encoding is a random bit string with
maximum entropy.

Keywords: perfect hash function, random oracle, space complexity, maximum entropy, cryp-
tographic hash function

Contents
1 Prior Art 1
2 Perfect hash functions 2
3 A theoretical cryptographic perfect hash function 4
3.1 Analysis . . . . 5
4 A practical two-level perfect hash function 10
4.1 Analysis . . . . . 10
5 Algebra of function composition 10
5.1 Composition preserves injectivity . . . . . . . . ... oL L 10
5.2 Permutation equivalence classes . . . . . .. ... L L L L 11
Appendices 11
A Probability mass of random bit length 11

1 Prior Art

Perfect hash functions have been extensively studied in the literature. Early foundational work by
Dietzfelbinger et al. [4] established theoretical bounds for space-efficient hash tables with worst-
case constant access time. Czech, Havas, and Majewski [3] introduced a family of perfect hashing
methods that became widely influential.

More recent practical algorithms have focused on minimal perfect hash functions (MPHFSs),
which achieve a load factor of exactly 1. Botelho, Pagh, and Ziviani [2] presented simple and



space-efficient constructions, while Belazzougui, Botelho, and Dietzfelbinger [1] developed the Com-
press, Hash, and Displace (CHD) algorithm, which achieves excellent space-time tradeoffs for large
datasets.

Our work differs by focusing on the theoretical properties of cryptographic perfect hash functions
with maximum entropy encodings, rather than minimal space or construction speed.

2 Perfect hash functions

A set is an unordered collection of distinct elements. If we know the elements in a set, we may
denote the set by these elements, e.g., {a,c, b} denotes a set whose membes are exactly a, b, and c.

A finite set has a finite number of elements. For example, {1,3,5} is a finite set with three
elements. When sets A and B are isomorphic, denoted by A = B, they can be put into a one-to-
one correspondence (bijection), e.g., {b,a,c} = {1,2,3}. Since there exists at least one bijection
between isomorphic sets, we can losslessly convert one to the other and thus, isomorphic sets are
in some sense equivalent.

The cardinality of a finite set A is the number of elements in the set, denoted by |A|, e.g.,

I{1,3,5}] = 3. A countably infinite set is isomorphic to the set of natural numbers N = {1,2,3,4,5,...}.

Given two elements a and b, an ordered pair of a then b is denoted by (a,b), where (a,b) = (c,d)
if and only if a = ¢ and b = d. Ordered pairs are non-commutative and non-associative, i.e.,
(a,b) # (b,a) if a # b and (a, (b,c)) # (b, (a,c)).

Related to the ordered pair is the Cartesian product.

Definition 2.1. The set X XY = {(z,y) : x € X Ay € Y} is the Cartesian product of sets X and
Y.

By the non-commutative and non-associative property of ordered pairs, the Cartesian product
is non-commutative and non-associative. However, they are isomorphic, i.e., X x Y 2 Y x X.

A tuple is a generalization of order pairs which can consist of an arbitrary number of elements,
e.g., (x1,me, ..., xy,).

Definition 2.2 (n-fold Cartesian product). The n-ary Cartesian product of sets X[1], ..., X[n], is
given by X[1] x -+ x X[n] = {(z1,...,2n) 1 x1 € X[ A -+ Ay, € X][n]}.

Note that X[1] x X[2] x X[3] = X[1] x (X[2] x X[3]) = (X[1] x X[2]) x X]3], thus we may
implicitly convert between them without ambiguity.

If each set in the n-ary Cartesian product is the same, the power notation may be used, e.g.,
X3 = X x X x X. As special cases, the 0-ary (nullary) Cartesian product is defined to be {f}, and
the 1-ary (unary) Cartesian product is the identity, e.g., X! = X.

The hash function is given by the following definition.

Definition 2.3. Hash functions of type X — Y are just total functions, normally with a finite
codomain, with the weak assumption that they will be used as a device to assign elements from X a
value from Y without requiring any particular rule.

For a given bit string x and hash function hash, y = hash(z) is denoted the hash of x.
We are particularly interested in perfect hash functions as given by the following definition.

Definition 2.4 (Perfect hash function). A perfect hash function over the set A C X, denoted by

ha i XY, (1)



Figure 1: A perfect hash function hash® : U — {0,1,2,3,4}.

X hash
o |

(o) 1]
O B
3
o 0

hx®(c)

is an injective function when restricted to A.!
Assumption 1. Perfect hash functions are surjective.
The load factor is given by the following definition.

Definition 2.5. The proportion of hashes mapped to by hashp : X — N over subset A is denoted
the load factor. Specifically, the load factor of hashp is a rational number given by

|lhashp (A)]
limage(hashp )|

(2)

Notation. A perfect hash function of type X — Y over A with a load factor r may be denoted by
hashy. If m = |A| and we are interested in drawing attention to the cardinality of the perfect hash
function, we may also denote it by hash],.

Example 1 Consider the set X = {x1,x9,23}. A perfect hash function of type U — N over X
with a load factor r = % is denoted by hash%6 or hashg'ﬁ. Given the load factor r and X, we may
deduce the codomain of hash to be precisely {0,1,2,3,4}. See Figure 1 for an illustration.

Definition 2.6. A minimal perfect hash has a load factor 1.

Every hash function in X +— Y is a perfect hash function over some subset of X, e.g., every
hash function is trivially a perfect hash function of () and singleton sets.
Assuming X and Y are finite, the set of hash functions of type X +— Y, which may also be

denoted by YX, has a cardinality
[, (3)

The set of perfect hash functions over A C X is a subset of X — Y with the predicate that no
collisions may occur on any pair of elements in A. The set of perfect hash functions over A has a
cardinality

permutations(|Y/|, [A])|Y|XI-1A] (4)

!There are no collisions among elements of A, hasha (z) # hasha(y) for all z,y € A, = # y.




3 A theoretical cryptographic perfect hash function

The bit set {0,1} is denoted by {0,1}. The set of all bit strings of length n is therefore {0, 1}".
The cardinality of {0,1}" is 2". In the case of {0,1}, we denote {0,1}° by e. The set of all bit
strings of length n or less is denoted by {0,1}=" with a cardinality 2"*! — 1, e.g., {0,1}=2 =
e U{0,1} U {0,1}2. The countably infinite set of all bit strings, lim, {0, 1}=", is denoted by
{0,1}*. A tuple (x1,22...) € {0,1}* is denoted a bit string, and we typically drop the angle
brackets when specifying stings, e.g., (z1,22) = z1x2.

An important operation that is closed over the free semigroup of {0,1} is concatentation, # :
{0,1}* x {0,1}* — {0, 1}*, which is defined as ay...an # b1 ...by = a1 ...aub1 ... by, with special
cases * # € =ec# xr = x.

Most hash functions are of the type {0,1}* — {0,1}" where n is some finite natural number.

Another useful function is the binary padding function pad : {0, 1}* X Z>o — {0,1}* is defined
as pad(zx, k) = x # 0" BL(®) with the special case pad(z,0) = e.

The binary truncation function trunc : {0, 1}*xN +— {0, 1}* is defined as trunc(ay . .. ak ... an, k)
aj . ..ay, with the special case trunc(z,0) = e.

The bit length function BL : {0,1}* — N is defined as BL(a;...a,) = n, e.g., if b € {0,1}"
then BL(b) = n.

Since {0,1}* = N, they may put into one-to-one correspondence. A convenient one-to-one
correspondence between them is given by the following definition.

Definition 3.1. The sets {0,1}* and N have a bijection given by

b1, b > 2™y 2" b, (5)
j=1

We denote the mapping described by Definition 3.1 with the postfix function ’ : {0,1}* — N
and ' : N — {0,1}*, which are inverse functions, i.e., ”/ = x. An important observation of this
mapping is that a natural number n maps to a bit string n’ of length BL(n') = [logyn].

More generally, if we have some set U, in a physical computer there must be a way to map the
elements of U to bit strings that repesent the values. We provide this mapping with encoder and
decoder functions denoted respectively by e[U] : U +— {0,1}* and d[U] : {0,1}* — U such that
d[U] ocey — idU and ey o dU = id{O,l}*'

A special case of the encoder and decoder is given by letting any bit string represent either
the sequence of bits aj...a, or as the binary coded decimal (BCD), e.g., 010 <— 4. Thus,
any operation on non-negative integers may be applied to bit strings without ambiguity, e.g.,
010 + 01 = 11.

Given a function of g : X — Y, the domain of g may be denoted by dom(g) = X and the
codomain may be denoted by codom(g) =Y.

A random oracle as given by the following definition.

Definition 3.2. A random oracle in the family {0,1}* — {0,1}*° is a theoretical hash function
whose output is uniformly distributed over its codomain.

The theoretical analysis of the perfect hash function makes the following assumption.
Assumption 2. The hash function hash : {0,1}* — {0,1}*° is a random oracle.

Definition 3.3. The data type for the cryptographic perfect hash function under consideration is
defined as PH = {0,1}* x N with a value constructor ph : P(U) x [0,1] — PH defined as

ph(X,r) = (n', N) (6)



where

m = [X],
N = [m/r],
k = [logy NT,

Blx,n) = trunc(hash(ac' +# n'),k)/ mod N,
Y, = {B(z,n) € {0,...,N — 1}|z € X},
n =min{j € N|Y; € 2N A |Y;| = m}.

Since PH is a data type that purports to model perfect hash functions, its computational basis
is given by the following set of functions.

By the assumption of surjectivity (and the perfect hash function is not rated-distorted), then
the load factor is given by % where N = arg max,cy hashp (z), i.e., the maximum hash (natural
ordering of integers) of hashp.

Definition 3.4. The minimum and maximum hash of a value of type PH (that models a perfect
hash function) are given respectively by min_hash : PH — N and max_hash : PH — N where

min_hash(b, N) = 0 and max_hash(b, N) = N — 1. (8)

The most important function, the perfect hash mapping, perfect_hash : PH x U — N, is defined
as

ph((b,N),z) = ¢ mod N 9)
where
k= ﬂogQ N—|7
r = hash(z’ # b), (10)

q = trunc(r, k).

Theorem 3.1. A wvalue of type PH constructed with phyg1y-(A,r) models hashjy : {0,1}*
{0,1,...,k — 1} where A C{0,1}* and k = 1],

T

Proof. Proof here. O

Suppose we have a function f : U +— {0,1}* such that f|p is injective, e.g., an encoder for
values of A C U. The composition hashp = hashp o f where B = {f(a) € {0,1}*|la € A} is a
perfect hash function of type U — N over A C U. Thus, the rest of the material in this paper does
not usually assume any particular domain of the perfect hash function since injections may always
be constructed for any set.

3.1 Analysis

Note that since n’ denotes the geometric code for n and we choose the smallest n that succeeds,
where each choice of n is a geometrically distributed trial with probability p, the expected space
complexity obtains the information-theoretic lower-bound of 1.44 bits per element.

We search all possible hash functions which are a function of hash, an approximate random
oracle, and choose the perfect hash function on a specified set that has the smallest bit length. We
describe the algorithm for performing this exhaustive search in Algorithm 1.



We consider a family of perfect hash functions for a set $ which are given by the output of a hash
function hash that approximates a random oracle applied to the input x € $ concatenated with
a bit string b. We describe the generative algorithm for the perfect hash function in Algorithm 1.
Note that in Algorithm 1, the concatenation of two bit strings z and y is denoted by x # y.

The perfect hash function generated by Algorithm 1 has the statistical property that the output
is uniformly distributed as given by the following theorem.

Theorem 3.2. The perfect hash function hash[A][r] : X — {0,1,...,k — 1}, where k = ‘;ﬂ, is
a random oracle over X — A and the restriction hash’y|a : A — {0,1,...,k — 1} is a random

k-permutation oracle of A.

Proof. First, in Algorithm 1 on Line 5, b, is a bit string such that each x € 3 concatenated with b,
hashes to a unique integer in {1,..., N} by the hash function hash, thus the hash function found
perfectly hashes the elements of 5.

Second, by Definition 3.2, hash approximates a random oracle whose output is uniformly
distributed over the elements of {0,1}". Viewing the elements of {0,1}" as integers, where
|{0,1}"| = 2™, hash is uniformly distributed over {0,1,...,2" —1}.

If N = k2" for some integer k, the remainder of the output of hash when dividing by N,
given by the modulo operator, and adding 1 is uniformly distributed over {1,..., N} since each
j €{1,...,N} has an equal number of hashes assigned to it by hash. If 2" > N and N # k2"
for some integer k, then it is approximately uniformly distributed and converges to the uniform
distribution as n — oo. O

The probability that no collisions occur for a particular bit string in Algorithm 1 is given by
the following theorem.

Theorem 3.3. The probability that a bit string b € {0,1}* results in a perfect hash function is
given by
p(m,r) = N""PFy (11)

where m is the cardinality of the set being perfectly hashed, r is the load factor, and N = ==.

Proof. Suppose we have a set A C {0,1}* of cardinality m. The set of perfect hash functions
hash’y : {0,1}* + {0,1,..., N — 1} restricted to A where N = ™ has a cardinality given by P}
since any choice of m out of IV elements in the codomain and any ordering of the m elements in A
to the chosen m elements in {0,1,..., N — 1} satisfy the definition of perfect hashing.

The set of hash functions {0,1}* — {0,1,..., N — 1} restricted to A has a cardinality of N".
Therefore, the ratio of perfect hash functions restricted to A to the total hash functions restricted
to A is just

Py
- Nm (a)

By the property of the hash function hash® being a random oracle, the algorithm randomly

samples one of the hash functions, which is a perfect hash function with probabilty p.

p

O]

Equation (11) may be reparameterized with respect to the load factor. By (2), » = m/N.
Solving this equation with respect to N yields the solution

m
N=— 12
T’ ( )



and thus plugging in this value of N yields the result

!
p(m,) OHCEDN (13)

s T

The expected in-place coding size is given by the following theorem.

Theorem 3.4. The expected coding size is given approximately by

1 1 .
10g2 e — (’r‘ — 1) 10g2 <1—7‘> bZtS/@lement. (14)
Proof.
%(l—r)logz(l—r)—loan—(u—n)logQ(l—n/u) (a)
1 1 uU—n n
——1]1 1—7r)— =1 — | 1——
(3= 1)tom 1= ) = Ttogn— "oy (1) (v)

The space required for the perfect hash function found by Algorithm 1 is of the order of the
length n of the bit string b, in the returned tuple. Therefore, for space efficiency, the algorithm
exhaustively searches for a bit string in the order of increasing size n.

We are interested in the first case when no collision occurs, which is a geometric distribution
with probability of success p(m,r) as given by the discrete random variable

Q ~ Geometric(p(m,r)), (c)

where p(m,r) is given by (13. The expected number of trials for the geometric distribution is given

by
1 mA™ (M)
E[Q] = _ &) (,,f, ! ()
p(m7 T) (7) .
By Definition 3.1, the n-th trial uniquely maps to a bit string of length m = |logyn|. Thus, the
expected bit length is given approximately by

E flog, Q] = logQ((T) e m”) (©

= mlog, (%) + log, (% - m)! — log,y (%)' bits. (f)

By Stirling’s approximation,
logy n! =~ n (logyn — logs e) . (g)

and so the expectation may be rewritten approximately as
m m m
E [Q] = mlog, (7) - <10g2 (7) — log, e) +

(% — m) (10g2 (% — m) — log, e) bits.

Since we are interested in the expected bits per element, we divide the expectation by m and after
further simplification arrive at

o () s (2) 4

1
( - 1) log, (T — m) + logy e bits/element.

T T

(h)



After further simplification, we arrive at

1 1
logy e — <r - 1> logy <“> bits/element. ()

The entropy of @ is given by

Tp logy(1 —p) — logs(p) (15)

1 1 1
——1]log ()+log — 16
(p ) \1-p ?p (16)

Note that Algorithm 1 has an exponential time complexity with respect to the cardinality of
the input set $. As a result, Algorithm 1 is not a practical algorithm for any reasonably large m.
However, it is intended to illustrate theoretical properties useful to data structures that implement
oblivious sets and maps[4, 3] based on the perfect hash function. Simple and efficient algorithms
exist [1, 2].

The theoretical lower-bound of a minimal perfect hash function is given by the following pos-
tulate.

Postulate 3.1. The theoretical lower-bound for minimal perfect hash functions has an expected
coding size given approximately by
1.44 bits/element. (17)

Theorem 3.5. The cryptographic perfect hash generator given by Algorithm 1 results in a mini-
mal perfect hash function that obtains the theoretical lower-bound of 1.44 bits/element by invoking
make perfect_hash(-, r =1).

Proof. By (14), letting r — 17 for the minimal perfect hash results in an expected coding size
given by

1
logye — lim alogy — = 1.44 bits/element, (a)
a—0~ a
which is the expected lower-bound given by Postulate 3.1. O

This is as expected, since Algorithm 1 finds the smallest perfect hash function that is a function
of a random oracle for any load factor 0 < r < 1 in which the distribution of the sets are uniformly
distributed. The following corollary follows as a result.

Corollary 3.5.1. The lower-bound for perfect hash functions with a load factor 0 < r <1 is given
by (14.

As r goes to 0, the expected bits per element goes to 0. t Note that the probability mass function
of the random bit string found for b is known exactly. Thus, if the desire is to serialize the perfect
hash function for transmission or storage, shorter bit strings may be assigned to more probable bit
strings. This representation is not usable in-place, i.e., the serialization must be decoded, but it
can reduce transmission or storage cost.



Algorithm 1: Cryptographic perfect hash function constructor (single-level)

Input: X C {0,1}* is the set to be perfectly hashed, and r € (0, 1] is the load factor.
Output: A perfect hash function of X with load factor r, represented as (b,, N) where

N = [XI/r].
1 function make perfect hash(X, r)
2 m + |X|;
3 N < [m/r];
4 k « [logy N1;
5 for n < 1 to co do
6 Y « 0;
7 a + true;
8 for r € X do
9 h « trunc(hash(2’ # n'), k) mod N;
10 if h € Y then
11 « < false;
12 break;
13 Y Y U{h};
14 if o then
15 | return (n/, N);

Algorithm 2: Two-level perfect hash function constructor

Input: X C U is the objective set, r € {qg € Q¢ € 277 A j € N} is the load factor, and
k € N is the number of entries in the intermediate hash level.
Output: A two-level perfect hash function of X C U with a load factor r and an
intermediate level of k indices, denoted by hash : U+ {0,..., N} where

N =12l
1 function make,gerfecthash(X, r, k)
2 N = @;
3 t= ﬂorg2 kl;
// X[1],...,X[k] is a total partition of X and X[j],...,X[jx] is in
decreasing order of cardinality.
4 X[/ = {z € X | trunc(hash(z’ # 0'),t)" mod k = ¢};
5 Y — 0;
6 A« 0
7 for /<1 to k do
8 for n <~ 1 to oo do
9 B(x) = trunc(hash(z’ # n'), N);
10 Y, = {8(x)|z € X[{]};
11 if |Yy| = |X4|/\Y4ﬂY:®then
12 Y+~ YUYy
13 break;
14 A+~ AU{(ln)};
15 return (A, k,N)




4 A practical two-level perfect hash function

4.1 Analysis

Suppose we have a set X of m elements with some total order z(y),...,x(y) for which we seek a
perfect hash function hashx : U — mathbbmZ.

We denote the serialization of some value z by /. If x is already understood to be a serialization,
then 2’ denotes deserialization instead.

By the assumption that the hash function hash : U + {0,1}* is a random oracle restricted to

the codomain {0, 1}*, the n-th attempt (trial) hash (x’(].) #n/ ) to find a non-colliding hash for ;)
has a probability of success p; = me]H since we have already found hashes for the previous j — 1
elements and therefore there are only m — (j — 1) hashes remaining.

This is an example of the Coupon collector’s problem. Let T} denote the uncertain number of
trials needed to find a non-colliding hash for z ;). The total number of trials needed is an uncertain

random variable given by

m
T=> T, (18)
j=1
By the linearity of the expectation operator,
m m
E(T) =Y E(Tj) = Zplj = mH,_1, (19)
j=1 J=1

which asymptotically converges to E(T) = m~y+mIn(m — 1) or on average v+ In(m — 1) trials per
element of X.

If we use the minimum number of bits

The variance of T' is given by

VT => VT (20)

5 Algebra of function composition

Perfect hash functions can be composed with other functions to create new perfect hash functions
with different properties. This algebraic structure provides flexibility in designing hash function
families.

5.1 Composition preserves injectivity

While a perfect hash function ha : X — Y is not globally injective, its restriction to A is injective:
hAA|A A Y. (21)

This restriction property enables composition with injective functions while preserving the perfect
hash property.

Theorem 5.1 (Post-composition with injection). Let g : Y — Z be an injective function, hly :
X — Y be a perfect hash function, and |Z| = (1+«)|Y| for o > 0. The composition gohly : X +— 7

. . /
is a perfect hash function h'y where r' = ra-

10



Proof. From the load factor definition, r = @J, so Y] = I;ﬂ. Since g is injective, go hly is injective
on A, making it a perfect hash function with load factor

Al A 1Al s

1zl (A+a)lY] a4+l 1+a

5.2 Permutation equivalence classes

Given a perfect hash function hp : X — Y, composing with any permutation 7 : Y — Y yields
another perfect hash function 7 o hp over A with the same load factor. Since there are |Y|!
permutations of Y, a single perfect hash function generates a family of |Y|! related perfect hash
functions.

These functions form an equivalence class where all members have identical collision structure

outside of A. This equivalence class can be denoted [ o hp| where 7 ranges over all permutations
of Y.

Corollary 5.1.1. For a perfect hash function with codomain Y, the ratio of permutation-equivalent
perfect hash functions to all possible functions is
[Y!
YT

(22)

Appendices

A Probability mass of random bit length

Algorithm 3: Bit length sampler of the cryptographic perfect hash function

Input: The number m is the cardinality of the perfect hash set and the number r is the
load factor.

Output: The minimum bit length n conditioned on a random set of cardinality m and a
load factor 7.

1 function sample bit_length(m,r)

2 for i + 1 tom do

3 x < randomly draw a bit string from {0, 1}* without replacement;

4 $—Su{z};

5 (bp, N) < make_perfect_hash (3, r);

// The integer N must also be coded, which we assume has a constant bit

length.
6 return n + O(1);

The bit length of the perfect hash function found by Algorithm 1 has an uncertain value with
respect to (random) sets and therefore we may model it as a random variable as given by the
following definition.

11



Definition A.1. The perfect hash function generated by Algorithm 1 has a random bit length given

by
N = sample_bit_length(m,r) (23)

where m is the cardinality of the random set and r is the load factor.

Note that if the distribution of sets is not uniformly distributed as given by sample_bit_length,
then better algorithms than Algorithm 1 are possible, i.e., the lower-bounds are with respect to
uniformly distributed random sets and smaller lower-bounds are possible if the random sets are
non-uniformly distributed.

The probability mass of the random bit length N is given by the following theorem.

Theorem A.l1. The random bit length N has a probability mass function given by
pn(nlm,r) =¢>" 7 (1-¢""). (24)
where m is the cardinality of the random set, r is the load factor, and ¢ =1 — p(m,r),

Proof. Each iteration of the loop in Algorithm 1 has a collision test which is Bernoulli distributed
with a probability of success p(m, r), where success denotes no collision occurred. We are interested
in the random length N of the bit string when this outcome occurs.

For the random variable N to realize a value n, every bit string smaller than length n must fail
and a bit string of length n must succeed. There are 2" — 1 bit strings smaller than length n and
each one fails with probability ¢, and so by the product rule the probability that they all fail is
given by

¢t (a)

Given that every bit string smaller than length n fails, what is the probability that every bit
string of length n fails? There are 2" bit strings of length n, each of which fails with probability ¢
as before and thus by the product rule the probability that they all fail is ¢", whose complement,
the probability that not all bit strings of length n fail, is given by

1-¢*". (b)

By the product rule, the probability that every bit string smaller than length n fails and a bit
string of length n succeeds is given by the product of (a) and (b),

" (1-4"). (c)

For (c to be a probability mass function, two conditions must be met. First, its range must be a
subset of [0,1]. Second, the summation over its domain must be 1.

The first case is trivially shown by the observation that ¢ is a positive number between 0 and
1 and therefore any non-negative power of g is positive number between 0 and 1.

The second case is shown by calculating the infinite series

S=> ¢ (1-¢") ()
n=0

1

n n—+

= E q2 1—(.72 g (e)
n=0

Explicitly evaluating this series for the first 4 terms reveals a telescoping sum given by
S=(1-q)+(a-¢)+ (@ —a)+ @ =)+, (f)

where everything cancels except 1. O

12



Figure 2: Probability mass function of
random bit length N

fy(njm=25,r)
0.25 i A
I\ Iy
H H ll |‘ Load Factor
0.20 [ 1)
. 91 1 \
I I — 9
[ 1 1 ,' 1
o1sf i i R T A N 0.75
I 1 | 1
cr i e T A D e 05
o10f I 1 : ,’ 1
[l 1 H I ‘I ———— 0.25
] 1 1 I \
’I' ..!:- II 1
0.05 ] \
f A L/ 1
GO v/ 1
o P \
PO SO Lk SO s ‘ n
0 5 10 15 20 25 30 35

In Figure 2, we plot the probability mass function of N conditioned on m = 25 and several
different load factors. We see that the probability mass is peaked and unimodal and tends to nearly
zero everywhere except over a concentrated interval around its expected value.

The expected size was already computed, but the probability mass function contains everything
there is to know about the distribution of NV, not just the expected value. However, for illustration,
we show how the expected value may be computed.

Theorem A.2. The expected bit length of N conditioned on random sets of cardinality m and a
load factor r is given by

BV =3 1, (25)

7j=1
where ¢ =1 — p(m, r).

Proof. The expectation of N is given by

f:qu*1 (1 - q2j> (a)
=0

_ g}j (qgj—l _ q2j+1—1> _ (b)

Explicitly evaluating this series for the first 4 terms reveals a converging sum given by

0+(¢—a")+2(¢> —¢") +3(¢" —¢") +--- (c)
=g+ +q" +q"+ ()
O

When we numerically evaluate (25 for various m and r, the results are in agreement with (14.

13



References

1]

2]

Djamal Belazzougui, Fabiano C Botelho, and Martin Dietzfelbinger. Compress, hash, and
displace algorithm. ACM Journal of Ezperimental Algorithmics (JEA), 14:1-26, 2009.

Fabiano C Botelho, Rasmus Pagh, and Nivio Ziviani. Simple and space-efficient minimal perfect
hash functions. In International Workshop on Algorithms and Data Structures, pages 139-150.
Springer, 2007.

Zbigniew J Czech, George Havas, and Bohdan S Majewski. A family of perfect hashing methods.
The Computer Journal, 35(6):547-554, 1992.

Martin Dietzfelbinger, Anna Karlin, Kurt Mehlhorn, Friedhelm Meyer auf der Heide, Hans
Rohnert, and Robert E Tarjan. Space-efficient hash tables with worst-case constant access

time. In STACS 90: 7th Annual Symposium on Theoretical Aspects of Computer Science Rouen,
France, February 22-24, 1990 Proceedings 7, pages 271-282. Springer, 1990.

14



	Prior Art
	Perfect hash functions
	A theoretical cryptographic perfect hash function
	Analysis

	A practical two-level perfect hash function
	Analysis

	Algebra of function composition
	Composition preserves injectivity
	Permutation equivalence classes

	Appendices
	Probability mass of random bit length

