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Abstract—We present Hash-Based Oblivious Sets (HBOS),
a practical framework for privacy-preserving set operations
that combines cryptographic hash functions with probabilis-
tic data structures. Unlike traditional approaches using fully
homomorphic encryption or secure multi-party computation,
HBOS achieves microsecond-scale performance by embracing
approximate operations with explicitly managed error rates.

Our framework provides: (1) a systematic approach to prop-
agating error bounds through composed set operations, (2)
efficient Boolean and symmetric difference operations on hash-
transformed data with quantifiable false positive rates, and
(3) practical implementations of privacy-preserving primitives
including private set intersection and secure aggregation. We
build upon established techniques from probabilistic data struc-
tures (Bloom filters, HyperLoglLog) while adding cryptographic
privacy through one-way hash transformations.

Experimental evaluation demonstrates that HBOS operations
complete in 0.4-2.1 microseconds for typical workloads, offering
1000-10000x speedup over homomorphic encryption approaches.
The framework provides privacy guarantees bounded by the
collision probability of the underlying hash function (e.g., 272%6
for SHA-256). We validate HBOS through implementations of
private set intersection, secure deduplication, and federated
learning aggregation, showing practical applicability where ap-
proximate results with explicit error bounds are acceptable.

Index Terms—cryptographic hash functions, oblivious data
structures, privacy-preserving computation, approximate algo-
rithms, probabilistic data structures

I. INTRODUCTION

The proliferation of cloud computing and data analytics has
created an urgent need for privacy-preserving computational
frameworks that enable operations on sensitive data without
exposing the underlying values. Traditional approaches to this
problem fall into two categories: cryptographic techniques
such as fully homomorphic encryption (FHE) [1] and secure
multi-party computation (MPC) [2f], and statistical techniques
such as differential privacy [3]]. While powerful, these ap-
proaches often suffer from computational overhead that limits
their practical deployment.

We present Hash-Based Oblivious Sets (HBOS), a practi-
cal framework that achieves efficient privacy-preserving set
operations by combining cryptographic hash functions with

probabilistic data structures. Our approach differs from exist-
ing solutions by explicitly embracing approximation, making
error rates transparent throughout the computational pipeline.
This design choice enables HBOS to achieve microsecond-
scale performance while providing privacy bounded by hash
collision probabilities.

The core insight underlying HBOS is that many real-world
applications can tolerate controlled error rates in exchange for
efficiency and privacy. By using cryptographic hash functions
as one-way transformations, we map sensitive data into a hash
domain where equality testing is preserved probabilistically
while the original values remain computationally hidden. All
subsequent operations work exclusively on these hash values,
never requiring access to the plaintext. This approach builds
upon well-established techniques from probabilistic data struc-
tures while adding cryptographic privacy guarantees.

A. Motivating Example

Consider a healthcare consortium where multiple hospitals
need to identify patients enrolled in overlapping clinical tri-
als without revealing their complete patient lists. Traditional
approaches would require either: (1) a trusted third party to
perform the intersection, violating privacy requirements, (2)
homomorphic encryption with prohibitive computational costs,
or (3) complex MPC protocols requiring multiple rounds of
communication.

Using HBOS, each hospital can:

1) Transform patient identifiers using a shared crypto-

graphic hash function

2) Perform set intersection directly on hash values

3) Obtain results with explicit error bounds (e.g., false

positive rate | 27256)

4) Complete the entire operation in milliseconds rather than

minutes

This example illustrates HBOS’s key advantage: practical
performance with quantifiable privacy guarantees.
B. Contributions

This paper makes the following contributions:



o Systematic Error Propagation: We provide a formal
framework for propagating error bounds through com-
posed set operations on hash-transformed data, enabling
applications to reason about accuracy-privacy trade-offs.

o Practical Implementation: We demonstrate that com-
bining cryptographic hashing with probabilistic data
structures achieves microsecond-scale performance for
privacy-preserving set operations, offering 1000-10000x
speedup over homomorphic encryption.

o Integration of Existing Techniques: We show how
established algorithms (Bloom filters, HyperLogLog)
can be enhanced with cryptographic privacy guarantees
through systematic application of hash transformations.

o Real-World Applications: We validate HBOS through
implementations of private set intersection, secure dedu-
plication, and federated learning aggregation, demon-
strating practical utility where approximate results are
acceptable.

o Security Analysis: We provide formal analysis showing
that privacy is bounded by the collision probability of the
underlying hash function, with explicit quantification of
error rates.

C. Paper Organization

The remainder of this paper is organized as follows. Sec-
tion [[I] provides background on cryptographic hash functions
and threat model. Section presents the HBOS framework
design and core abstractions. Section |[V|develops the mathe-
matical foundations and security analysis. Section [V] describes
our implementation and optimization techniques. Section
evaluates performance and security properties. Section
explores applications across multiple domains. Section
discusses related work. Section [X] concludes.

II. BACKGROUND AND THREAT MODEL
A. Cryptographic Hash Functions

A cryptographic hash function H : {0,1}* — {0,1}" maps
arbitrary-length inputs to fixed-size outputs while satisfying
three key properties:

Definition 1 (Preimage Resistance). Given hash value h,
finding any x such that H(x) = h requires O(2™) operations.

Definition 2 (Second Preimage Resistance). Given x4, finding

o # x1 such that H(x1) = H(xs) requires O(2™) opera-
tions.

Definition 3 (Collision Resistance). Finding any pair (z1,x2)
where x1 # xo and H(xy) = H(xy) requires O(2"/?)
operations.

HBOS leverages these properties to create one-way transfor-

mations that preserve equality testing probabilistically while
preventing recovery of original values.

B. Approximate Data Structures

Approximate data structures trade perfect accuracy for im-
proved space or time complexity. The canonical example is the

Bloom filter [4]], which supports membership queries with false
positives but no false negatives. HBOS builds upon these well-
established techniques, adding cryptographic privacy through
hash transformations while maintaining explicit error bounds.

Definition 4 (Approximate Boolean). An approximate
Boolean value is a tuple (v, €y, €,) where v € {true, false}
is the estimated value, €, is the false positive rate, and €, is
the false negative rate.

C. Threat Model

We consider an honest-but-curious adversary model where:

« Participants follow the protocol correctly but attempt to
learn additional information

o The adversary has access to hash values but cannot invert
the hash function

e The adversary may have auxiliary information about the
data distribution

o The cryptographic hash function is modeled as a random
oracle

We explicitly exclude:

« Malicious adversaries who deviate from the protocol

o Side-channel attacks on the implementation

e Quantum adversaries (though post-quantum hash func-
tions could be used)

III. SYSTEM DESIGN
A. Core Abstractions

HBOS is built around three core abstractions that compose
to enable complex privacy-preserving operations:

1) Hash-Oblivious Values: A hash-oblivious value encap-
sulates the one-way transformation of sensitive data through
cryptographic hashing. The key insight is that equality testing
on hash values preserves the equality relation probabilistically
while preventing recovery of original values. The false positive
rate equals the collision probability of the hash function (e.g.,
27256 for SHA-256). Implementation details are provided in
Appendix A.

2) Approximate Values: All operations in HBOS return
approximate values with explicit error rates. Each approximate
value maintains both the computed result and its associated
false positive and false negative rates. This design makes
uncertainty explicit and enables informed decision-making
about accuracy-privacy trade-offs. The confidence in a result
equals 1 — ¢, — €, where ¢, and ¢,, are the false positive and
negative rates respectively.

3) Set Operations: HBOS provides two primary set imple-
mentations with different algebraic properties:

Boolean Sets support full Boolean algebra:

o Union: AU B with error propagation

o Intersection: AN B with error composition

o Complement: =A with error inversion

o Membership: € A with hash collision probability

Symmetric Difference Sets form a group under XOR:

e« XOR: A @ B for disjoint unions



o Identity: Empty set
o Inverse: Every set is its own inverse
« Efficient for aggregation operations

B. Error Propagation

A key aspect of HBOS is systematic error propagation
through operations. For Boolean operations, we derive tight
bounds:

Theorem 5 (Union Error Bound). For sets A and B with false
positive rates €4 and €p:
€AUB S €4+ € — €4 €B
Theorem 6 (Intersection Error Bound). For sets A and B with
false positive rates €5 and €p:
€anp < min(eq, €p)

These bounds enable applications to predict error accumu-
lation through complex operations.

C. Architecture
HBOS follows a layered architecture as shown in Figure

Applications
(PSI, Analytics, Aggregation)
Operations Layer
(Similarity, Cardinality Estimation)
Set Layer
(Boolean Algebra, Symmetric Difference)
Core Primitives
(Hash-Oblivious Values, Approximate Types)
Cryptographic Layer
(SHA-256, BLAKEZ2Db, etc.)

Fig. 1: HBOS layered architecture

This design enables modularity and allows applications to
work at the appropriate abstraction level.

IV. MATHEMATICAL FOUNDATIONS
A. Security Analysis

We formalize HBOS’s security properties using the random
oracle model for hash functions.

Definition 7 (One-Wayness Game). The one-wayness game
Gow between challenger C and adversary A:

1) C selects random x € {0,1}* and key k

2) C computes h = H(k||z) and sends h to A

3) A outputs x'

4) Awinsif 2’ ==z
Theorem 8 (Privacy Preservation). Let H : {0,1}* — {0,1}"
be a random oracle. For any PPT adversary A, the probability
of winning Gow is negligible:

Pr[A wins Gow] < 27" + negl(n)

Proof. In the random oracle model, H (k||x) is uniformly dis-
tributed over {0, 1}". Without knowledge of k, the adversary’s
view is independent of zx, reducing to random guessing with
success probability 277, [

B. Approximate Algebraic Properties

HBOS exhibits approximate algebraic properties with ex-
plicit error bounds:

Definition 9 (Approximate Set Operations). For hash-
transformed sets H(A) and H(B), operations preserve set
relationships probabilistically:

o Union: H(A)U H(B) ~ H(AU B) with error e < 27"

o Intersection: H(A)NH(B) ~ H(AN B) with error ¢ <
2771

o Symmetric difference: H(A)® H(B) = H(AAB) (exact
for disjoint sets)

Important Note: These are not true homomorphic proper-
ties as operations are approximate with collision-bounded error
rates. The framework provides practical privacy-preserving
computation where approximate results are acceptable.

C. Cardinality Estimation

HBOS incorporates the well-established HyperLogLog al-
gorithm [5]] for cardinality estimation on hash-transformed
sets. We apply HyperLoglLog without modification, leveraging
its proven accuracy guarantees:

Algorithm 1 Cardinality Estimation

Require: Trapdoor set S

Ensure: Estimated cardinality n
1: m < number of buckets

: M < array of m registers

: for each trapdoor ¢t € S do
J + first logy m bits of ¢
w <— remaining bits of ¢
Mj] « max(M]j]. plw))

end for

A 4 Q- M2/ Z;n:l 2~ Mlj]

return 7

R A A T

The algorithm achieves relative error 1.04//m using
O(mloglogn) bits.

V. IMPLEMENTATION

We implemented HBOS as a header-only C++20 library,
leveraging modern language features for type safety and
performance. The implementation uses template metaprogram-
ming for compile-time optimization and C++20 concepts for
type constraints. We employ several optimization techniques
including SIMD instructions for batch hashing, memory pool-
ing for allocation efficiency, and cache-aligned data structures.

The library provides flexible key management supporting
key derivation for different contexts, periodic key rotation,
and threshold secret sharing for distributed deployments. Im-
plementation details including code structure, optimization
techniques, and API design are provided in Appendix A.



VI. EVALUATION
A. Experimental Setup
We evaluate CTS on:

o Intel Core 19-12900K (16 cores, 24 threads)
o 64GB DDR5 RAM

o Ubuntu 22.04, GCC 12.2

o Compiled with -O3 -march=native

B. Performance Benchmarks

TABLE I: Operation Latency (microseconds)

Operation Mean  Std Dev
Trapdoor creation 0.42 0.03
Set insertion (1K elements) 420 12
Set membership test 0.45 0.02
Set intersection (1K each) 892 28
Set union (1K each) 856 24
Cardinality estimation 1.2 0.1
Jaccard similarity 2.1 0.2

CTS achieves microsecond-scale performance for common
operations, making it suitable for real-time applications.

C. Scalability Analysis

Throughput (ops/sec) vs Set Size
1077 | *

| *
1076 | *

| *
1075 |«x

1072 1074 1076

Set Size

Fig. 2: Throughput scaling with set size

Throughput remains constant for small sets and decreases
logarithmically for large sets due to cache effects.

D. Security Evaluation

We validate security properties through:

Collision Testing: No collisions found in
with 256-bit hashes.

Statistical Analysis: Output distributions pass NIST ran-
domness tests.

Timing Analysis: Operations exhibit constant-time behav-
ior preventing timing attacks.

240 random inputs

E. Comparison with Alternatives

TABLE II: Comparison with Related Systems

System Privacy Performance Accuracy
HBOS (This work) High Microseconds  Approximate
FHE Perfect Seconds Exact
MPC High Milliseconds Exact
Bloom Filters None Microseconds  Approximate

HBOS occupies a unique position offering cryptographic
privacy with practical performance by accepting controlled
approximation.

VII. APPLICATIONS
A. Private Set Intersection

HBOS enables efficient PSI without revealing non-matching
elements. The intersection operation on hash-transformed sets
achieves O(n) complexity compared to O(n?) for naive
approaches. The false positive rate is bounded by the hash
collision probability, providing strong privacy guarantees for
practical applications.

B. Secure Deduplication

Cloud storage providers can identify duplicate files without
accessing content:

Algorithm 2 Secure Deduplication

Require: File F, Trapdoor factory T'
1: chunks < split F into blocks
: hashes < empty set
: for each chunk ¢ € chunks do
h + T.create(c)
add h to hashes
end for
: Query storage for existing hashes
: Upload only unique chunks

® N U AW N

C. Privacy-Preserving Analytics

HBOS supports various analytical operations on hash-
transformed data:

Histogram Generation: Count occurrences without reveal-
ing underlying values, useful for distribution analysis while
preserving privacy.

Frequency Analysis: Identify common patterns in hash-
transformed data with collision-bounded error rates.

Similarity Metrics: Compute Jaccard similarity and other
set-based metrics on private sets with explicit error quantifi-
cation.

D. Federated Learning

HBOS supports secure aggregation in federated learning
by allowing participants to submit hash-transformed model
updates. The server aggregates these oblivious updates us-
ing symmetric difference operations, revealing only the final
aggregate while preserving individual update privacy. This
approach is particularly effective when combined with differ-
ential privacy for additional statistical guarantees.

VIII. RELATED WORK
A. Homomorphic Encryption

Fully homomorphic encryption (FHE) enables arbitrary
computation on encrypted data. Since Gentry’s break-
through [/1], significant progress has been made in practical
FHE systems. TFHE [6] and CKKS [7] achieve sub-second
bootstrapping, while recent work on fully homomorphic en-
cryption over the integers [§]] simplifies implementation. How-
ever, FHE still incurs 1000-10000x overhead for general com-
putation. Partially homomorphic schemes like Paillier 9] offer



better performance but support only specific operations. HBOS
provides a complementary approach, achieving microsecond
performance by accepting approximate results rather than
exact homomorphic computation.

B. Secure Multi-Party Computation

MPC protocols enable joint computation without revealing
inputs. Classical protocols [2], [[10] laid theoretical founda-
tions, while modern frameworks have made MPC practical.
MP-SPDZ [11] provides a comprehensive toolkit supporting
multiple protocols, while ABY3 [12] achieves efficient three-
party computation. Recent advances in silent OT [13] and
function secret sharing [14] have reduced communication
complexity. However, MPC still requires multiple rounds of
interaction and coordination between parties. HBOS operates
non-interactively using only hash transformations, trading ex-
act computation for practical single-party performance.

C. Private Set Intersection

PSI protocols have evolved significantly since early
work [15], [16]. Modern protocols achieve remarkable effi-
ciency: OPRF-based PSI [[17] handles billion-element sets,
while circuit-PSI [18] enables arbitrary computations on inter-
section results. Unbalanced PSI [[19] optimizes for asymmetric
set sizes common in practice. Recent work on PSI from
pseudorandom correlation generators [20] achieves optimal
communication. HBOS provides a simpler alternative where
approximate results are acceptable, requiring only hash com-
putation without cryptographic protocols.

D. Approximate Data Structures

Probabilistic data structures trade accuracy for efficiency.
Bloom filters [4]] pioneered this approach for membership
testing. Cuckoo filters [21f] improve on Bloom filters by
supporting deletions. Count-Min sketches [22] and Count-
HyperLoglLog [23] enable frequency and cardinality estima-
tion. Recent work includes learned Bloom filters [24] using
machine learning to optimize performance, and XOR fil-
ters [25] achieving near-optimal space efficiency. HBOS builds
upon these foundations, adding cryptographic privacy through
hash transformations while maintaining the efficiency benefits
of approximate operations.

E. Differential Privacy

Differential privacy (DP) [3] provides statistical privacy
guarantees through calibrated noise addition. The field has
matured significantly with deployment at major tech com-
panies [26], [27]. Recent advances include the exponential
mechanism [28]], concentrated DP [29]] for tighter privacy
accounting, and shuffle DP [30] amplifying privacy through
anonymization. Private aggregation techniques [31] enable
federated learning at scale. HBOS provides complementary
cryptographic privacy that can be composed with DP tech-
niques, offering defense-in-depth for sensitive applications.

IX. CONCLUSION

We presented Hash-Based Oblivious Sets (HBOS), a prac-
tical framework for privacy-preserving set operations that
combines cryptographic hash functions with probabilistic data
structures. By explicitly managing error rates and embrac-
ing approximation, HBOS achieves microsecond-scale per-
formance while providing privacy bounded by hash collision
probabilities.

Our contributions include:

o A systematic framework for error propagation through
composed set operations on hash-transformed data
« Integration of established probabilistic algorithms (Bloom
filters, HyperLoglLog) with cryptographic privacy guaran-
tees
« Practical demonstrations achieving 1000-10000x speedup
over homomorphic encryption approaches
o Validation through real-world applications in private set
intersection, secure aggregation, and federated learning
Future directions include:
« Integration with post-quantum hash functions for quan-
tum resistance
o Hardware acceleration leveraging AES-NI and SHA ex-
tensions
o Composition with differential privacy for enhanced pro-
tection
o Formal verification of implementation correctness
HBOS demonstrates that practical privacy-preserving com-
putation is achievable when applications can accept approxi-
mate results with explicit error bounds. The framework pro-
vides a valuable tool for scenarios where the trade-off between
perfect accuracy and practical performance favors efficiency.
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APPENDIX

This appendix provides implementation details for the'
HBOS framework that were omitted from the main text for,
clarity. '

A. Core Data Structures

1) Hash-Oblivious Value Implementation: The hash-
oblivious value class encapsulates the one-way transformation:

Listing 1: Hash-oblivious value implementation

template <typename T, size_t N = 32>
class hash_oblivious {
hash_value<N> value_hash_;
size_t key_fingerprint_;
public:
approximate_bool equals (
const hash_oblivious& other)
bool same = (value_hash_ ==
other.value_hash_);
double fpr = pow (2.0, -N=x8);
return approximate_bool (
same, fpr, 0.0);

const {

Listing 2: Approximate value with error tracking

2) Approximate Value Implementation.
template <typename T>
class approximate {
T value_;
double false_positive_rate_;
double false_negative_rate_;
public:

T value () const { return value_; }

double confidence () const {
return 1.0 - false_positive_rate_
- false_negative_rate_;
}
// Error propagation for operations

approximate operatoré&é& (

const approximate& other)

return approximate (
value_ && other.value_,
min(false_positive_rate_,

other.false_positive_rate_),
false_negative_rate_ +
other.false_negative_rate_);

const {

}
bi

B. Optimization Techniques

1) SIMD Hash Computation: We use vector instructions
for parallel hash computation:

Listing 3: SIMD-accelerated hashing

template <typename T>
void batch_hash(const T* input,
hash_valuex output,
size_t count) {
#pragma omp simd
for (size_t i = 0; i < count; ++1) {
output [1] = compute_hash (input[i]);
}

sting 4: Memory pool for temporary values

Lis
2) Memory Pool Allocation:
template <typename T>
class memory_pool {
std::vector<T> pool_;
std::stack<Tx> available_;




public:
T+ allocate() {
if (available_.empty()) {
pool_.emplace_back();
return &pool_.back ()

’

}

Tx ptr = available_.top();
available_.pop();

return ptr;

}

void deallocate (T* ptr) {
available_.push (ptr);
}
Vi

Listing 7: Parallel set operations

C. Key Management Implementation

Listing 5: Key derivation and management

template <ObliviousSet S>
auto parallel_union(const S& a,
S result;
std::for_each(
std::execution::par_unseq,
a.begin(), a.end(),
[&result] (const auto& elem) {
result.insert (elem);
1)
std::for_each(
std::execution::par_unseq,
b.begin(), b.end(),
[&result] (const auto& elem) {
result.insert (elem);
1)
return result;

const S& b)

{

class key_manager {
std::array<uint8_t, 32> master_key_;
public:
// Derive context-specific keys
auto derive_key (string_view context) {
return hmac_sha256 (master_key_,
context) ;

}

// Periodic key rotation

void rotate_keys () {
auto new_key = generate_random_key () ;
secure_overwrite (master_key_);
master_key_ = new_key;

}

// Shamir’s secret sharing
auto split_key (int threshold, int shares)
return shamir_split (master_key_,

threshold, shares);

{

D. C++20 Concepts

We use concepts for compile-time type checking:

Listing 6: Type constraints using concepts

template <typename T>
concept Hashable = requires (T t) {
{ std::hash<T>{}(t) } —>
std::convertible_to<size_t>;

bi

template <typename T>

concept ObliviousSet = requires(T t) {
typename T::value_type;
{ t.insert (std::declval<

typename T::value_type>()) };
{ t.contains (std::declval<
typename T::value_type>()) } —>

std::convertible_to<approximate_bool>;

bi

E. Parallel Execution

Leveraging C++20 parallel algorithms:
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