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Abstract

We present Alga, a header-only C++20 template library that models parsers as composable
algebraic structures. By treating parsers as elements of monoids and leveraging monadic com-
position patterns, Alga provides a mathematically rigorous yet practically efficient framework
for text processing. The library’s key innovation lies in its uniform Optional monad pattern for
error handling and its implementation of algebraic operators that follow mathematical laws. We
demonstrate how template metaprogramming ensures type safety while maintaining zero-cost
abstractions, making Alga suitable for both research and production environments.

1 Introduction

Parser combinators have long been recognized as an elegant approach to text processing, but
existing C++ implementations often sacrifice either mathematical rigor or practical efficiency. Alga
addresses this gap by providing a library where parsers are first-class algebraic objects that compose
through well-defined mathematical operations.

The core insight is that many parsing operations naturally form algebraic structures—particularly
monoids under various composition operations. By modeling these structures explicitly and pro-
viding a uniform interface through C++20 concepts and templates, we achieve both theoretical
elegance and practical efficiency.

2 Theoretical Foundations

2.1 Parsers as Monoids

At the heart of Alga lies the recognition that parsers form monoids under concatenation. A monoid
(M, ·, e) consists of a set M , an associative binary operation ·, and an identity element e.

Definition 1 (Parser Monoid). Let P be the set of parsers over an alphabet Σ. The concatenation
operation ∗ : P × P → P and the empty parser ϵ form a monoid (P, ∗, ϵ) where:

• (p1 ∗ p2) ∗ p3 = p1 ∗ (p2 ∗ p3) (associativity)

• p ∗ ϵ = ϵ ∗ p = p (identity)

This algebraic structure is preserved in Alga’s implementation, where the lc alpha type rep-
resents lowercase alphabetic strings forming a free monoid:
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1 // Concatenation operation (monoid multiplication)

2 lc_alpha operator *( lc_alpha const& lhs , lc_alpha const& rhs);

3

4 // Identity element (empty string)

5 auto identity = make_lc_alpha("");

Listing 1: Monoid operations in lc alpha

2.2 The Optional Monad Pattern

Error handling in parsing naturally fits the monadic pattern. Alga employs std::optional<T> as
its primary monad, providing:

Definition 2 (Optional Monad). The Optional monad consists of:

• A type constructor: M(T ) = optional<T>

• Return (pure): η : T → M(T )

• Bind: ≫=: M(T )× (T → M(U)) → M(U)

satisfying the monad laws.

This pattern enables elegant composition of potentially failing operations:

1 // All factory functions return optional <T>

2 auto word = make_lc_alpha("hello");

3 auto stem = word >>= []( auto w) { return stemmer(w); };

4

5 // Automatic short -circuiting on failure

6 auto result = make_lc_alpha("invalid123")

7 >>= stemmer

8 >>= make_ngram <2>; // Returns nullopt

Listing 2: Monadic composition in Alga

3 Design Philosophy

3.1 Uniform Interface Through Concepts

Alga leverages C++20 concepts to enforce algebraic structure requirements at compile time:

1 template <typename T>

2 concept AlgebraicType = requires(T const& a, T const& b) {

3 { a * b } -> std:: convertible_to <T>;

4 { T{} }; // Identity element

5 };

Listing 3: Algebraic type concept

This ensures all parser types support the same algebraic operations, enabling generic algorithms
that work with any conforming type.
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3.2 Operator Algebra

Beyond basic concatenation, Alga implements a rich set of algebraic operators that follow mathe-
matical laws:

• * : Concatenation (monoid operation)

• | : Choice (first successful parse)

• ^ : Repetition (Kleene star variant)

• >> : Sequential composition

• &&, || : Logical combinations

These operators combine to form a complete algebra for parser composition:

Theorem 1 (Distributivity). For parsers p, q, r ∈ P: p ∗ (q|r) = (p ∗ q)|(p ∗ r)

4 Implementation Techniques

4.1 Perfect Value Semantics

All Alga types implement complete value semantics, enabling use in standard containers and algo-
rithms:

1 std::vector <lc_alpha > words;

2 words.push_back (* make_lc_alpha("hello"));

3

4 // Full move semantics support

5 auto word = std::move(words [0]);

6

7 // Container storage without restrictions

8 std::map <lc_alpha , porter2_stem > stem_cache;

Listing 4: Value semantics example

4.2 Template Metaprogramming

Template specialization ensures zero-cost abstractions while maintaining type safety:

1 template <size_t N, typename T>

2 class ngram_stem {

3 std::array <T, N> elements;

4 public:

5 // Compile -time size checking

6 static_assert(N > 0, "N-gram␣size␣must␣be␣positive");

7

8 // Type -safe composition

9 auto operator *( ngram_stem const& other) const;

10 };

Listing 5: N-gram template specialization

3



5 Applications

Alga’s design makes it particularly suitable for:

1. Natural Language Processing: The Porter2 stemmer and n-gram support provide building
blocks for text analysis pipelines.

2. Domain-Specific Languages: The algebraic operator framework naturally extends to DSL
implementation.

3. Text Validation: The Optional pattern provides elegant handling of validation failures
without exceptions.

Example: Building a text processing pipeline:

1 auto process_text(std:: string_view input) {

2 return make_lc_alpha(input)

3 >>= []( auto word) {

4 return porter2_stemmer {}( word);

5 }

6 >>= []( auto stem) {

7 return make_bigram(stem , stem);

8 };

9 }

Listing 6: Practical text processing pipeline

6 Conclusion

Alga demonstrates that rigorous mathematical foundations need not compromise practical effi-
ciency. By modeling parsers as algebraic structures and leveraging modern C++ features, we
achieve a library that is both theoretically sound and practically useful. The uniform Optional
monad pattern provides consistent error handling, while template metaprogramming ensures type
safety without runtime overhead.

Future work includes extending the algebraic framework to support parallel composition and
investigating category-theoretic generalizations of the parser algebra.
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