Maximum likelihood estimator for exponential series system (C1,C2,C3)
Source:R/md_candidate_set_models.R
md_mle_exp_series_C1_C2_C3.RdComputes the MLE of component failure rates for an exponential series system with masked data under C1, C2, C3 candidate set conditions.
Usage
md_mle_exp_series_C1_C2_C3(
md,
theta0 = NULL,
sysvar = "t",
setvar = "x",
deltavar = "delta",
use_annealing = FALSE,
control = list(),
lower = 1e-10,
upper = Inf,
hessian = TRUE
)Arguments
- md
Masked data frame containing:
System lifetime column (default: "t")
Candidate set columns (default: "x1", "x2", ..., "xm")
Optional right-censoring indicator (default: "delta")
- theta0
Initial parameter values for optimization. If NULL, uses the method of moments estimator based on total system hazard.
- sysvar
Column name for system lifetime. Default is "t".
- setvar
Column prefix for candidate set (Boolean matrix). Default is "x".
- deltavar
Column name for right-censoring indicator. Default is "delta". If NULL or column doesn't exist, assumes no censoring.
- use_annealing
Logical. If TRUE, uses simulated annealing to find a good starting point before local optimization. Default is FALSE.
- control
List of control parameters passed to optim(). Default uses L-BFGS-B with reasonable settings.
- lower
Lower bounds for parameters. Default is 1e-10.
- upper
Upper bounds for parameters. Default is Inf.
- hessian
Logical. If TRUE, compute Hessian at the MLE. Default is TRUE.
Value
An object of class mle (from algebraic.mle package) containing:
theta.hat: The MLE of rate parameterssigma: Estimated variance-covariance matrixloglike: Log-likelihood at the MLEinfo: Observed Fisher information matrixnobs: Number of observationsconverged: Whether optimization converged
Details
Uses L-BFGS-B optimization with optional simulated annealing for finding a good starting point.
The MLE for exponential series systems with masked data has a closed-form solution only in special cases. In general, numerical optimization is required. This function uses the L-BFGS-B algorithm with analytically computed gradients for efficiency.