Observed Fisher information matrix for exponential series system (C1,C2,C3)
Source:R/md_candidate_set_models.R
md_fim_exp_series_C1_C2_C3.RdReturns a function that computes the observed Fisher information matrix (FIM) for an exponential series system with masked data under C1, C2, C3 conditions.
Arguments
- md
Masked data frame containing:
System lifetime column (default: "t")
Candidate set columns (default: "x1", "x2", ..., "xm")
Optional right-censoring indicator (default: "delta")
- sysvar
Column name for system lifetime. Default is "t".
- setvar
Column prefix for candidate set (Boolean matrix). Default is "x".
- deltavar
Column name for right-censoring indicator. Default is "delta". If NULL or column doesn't exist, assumes no censoring.
Value
A function I(theta) that computes the m x m observed Fisher
information matrix at parameter values theta.
Details
The observed FIM is the negative Hessian of the log-likelihood, which under regularity conditions converges to the expected FIM and can be inverted to obtain the asymptotic variance-covariance matrix of the MLE.
The (j,k) element of the observed FIM is: $$I_{jk}(\theta) = \sum_{i: \delta_i=0} \frac{I(j \in C_i) I(k \in C_i)}{(\sum_{l \in C_i} \lambda_l)^2}$$
Note: The survival contribution to the Hessian is zero (second derivative of linear term is zero), so only uncensored observations contribute.