Two-Level Threshold Structures for Approximate Membership

Testing
Space-Computation Trade-offs Beyond Bloom Filters

Alexander Towell

atowell@siue.edu

January 24, 2026

Abstract

We introduce threshold structures, a novel approach to approximate membership testing that
achieves constant query time while providing exact control over false positive rates. Unlike Bloom
filters, which require k hash computations per query where k depends on the desired error rate,
threshold structures require exactly 2 hash operations regardless of the target false positive rate
E.

The construction uses a two-level scheme: a binning hash partitions items into bins, then a
per-bin threshold seed ensures all items in each bin hash below a threshold value. Queries check
whether an item’s hash falls below threshold in its assigned bin. Under the random oracle model,
non-members pass this test with probability exactly e.

We prove that two levels are Pareto optimal for this construction, analyze the space-
computation trade-off surface, and characterize the parameter regime where threshold structures
outperform Bloom filters. Our analysis reveals connections to perfect hashing and extends the
Bernoulli types framework to a new class of approximate data structures.

Experimental validation in Python confirms our theoretical predictions: construction time
matches the expected e~ trials per bin, and empirical false positive rates converge to ¢ as
predicted.

1 Introduction

1.1 Motivation: Secure Indexes and Encrypted Search

Approximate set membership testing is a fundamental primitive in computer science, with applications
ranging from network routing to database systems. In the context of encrypted search, approximate
sets (specifically, Bernoulli sets) form the foundation of secure indexes [? ? |. A secure index over a
document enables encrypted keyword search: trapdoors derived from search terms are tested against
the index without revealing the underlying plaintext.

The canonical implementation uses Bloom filters [? |, which achieve excellent space efficiency—
approximately 1.44nlog,(1/¢) bits for n items with false positive rate €. However, Bloom filters
require k = log,(1/¢) hash computations per query, which can become costly for very small £ values
often required in security applications.

1.2 Contribution: Two-Level Threshold Structures

We propose threshold structures, an alternative approximate membership structure with the following
properties:

1. O(2) Query Time: Exactly two hash operations per query, independent of ¢.

2. Exact FPR: False positive rate equals € exactly (not approximately) under the random oracle
model.

3. Zero False Negatives: Members always return true.

4. Simple Construction: Deterministic algorithm with predictable time complexity.

The key insight is a two-level structure:
o Level 1 (Binning): A binning seed o partitions items into b bins via hi(z|/c) mod b.

o Level 2 (Threshold): Each bin i has a seed s; such that all items in bin ¢ hash below
threshold: ha(z||s;) < .

The threshold 7 = € - M where M = 2" is the hash output range. A query tests: (1) find the
bin, (2) check if hash is below threshold.
1.3 Results Overview

Theorem 1.1 (Completeness). For any set S of n items and target false positive rate € € (0,1), if
the number of bins satisfies b > n/{ where { is the maximum items per bin, and M > log(1/5)/e’,
then the construction succeeds with probability at least 1 — 6.

Theorem 1.2 (False Positive Rate). Under the random oracle model, for any item x ¢ S, the
probability that x tests positive is exactly €.

Theorem 1.3 (Two-Level Optimality). Among n-level threshold structures with fized leaf bin sizes,
the 2-level construction is Pareto optimal in the space-query trade-off.
1.4 Paper Organization

Section [2| reviews preliminaries on Bernoulli types and the random oracle model. Section [3| presents
the two-level construction. Section M| provides theoretical analysis of query correctness, construction
time, and space complexity. Section [5] proves the optimality of two levels. Section [6] discusses
parameter selection. Section [7] connects threshold structures to perfect hashing. Section (8| presents
experimental validation. Section [9] surveys related work, and Section [I0| concludes.

2 Preliminaries

2.1 Bernoulli Types Framework

We work within the Bernoulli types framework [?], which provides a principled approach to
approximate computation. The key concepts are:

Definition 2.1 (Bernoulli Boolean). A Bernoulli boolean b is a random variable that approximates
a latent boolean b € {0,1} with:

« Fualse positive rate (FPR): Pr[b=1|b

|
=

I

(L)

e Fulse negative rate (FNR): Pr[b=0]b

I
=
|
(o5

Definition 2.2 (Bernoulli Set). A Bernoulli set S approximates a latent set S C U via a membership
test query : U — {0, 1} such that:

o For z € S: Pr[query(z) = 0] = 0 (false negative rate)
o For z ¢ S: Pr[query(z) = 1] = ¢ (false positive rate)

A Bernoulli set with = 0 has perfect recall.

2.2 Random Oracle Model

We model hash functions as random oracles: functions A : {0,1}* — [0, M) such that for any input
x, the output h(z) is uniformly distributed and independent of all other outputs.
Under this model:

o Prlh(x) < 7] =7/M = ¢ for threshold T =¢- M
e Hash values for distinct inputs are independent

While real hash functions are not true random oracles, cryptographic hash functions like SHA-256
closely approximate this behavior for practical purposes.

2.3 Bloom Filters as Baseline

The Bloom filter [? | is the standard Bernoulli set implementation:

o Space: m = —(’fnlg)% ~ 1.44nlogy(1/e) bits
e Query time: k = logy(1/¢) hash computations
« FPR: Approximately (1 — e **/™)F ~ ¢

The key limitation is that query time grows with logy(1/¢). For ¢ = 272°_ this means 20 hash
operations per query.

3 Two-Level Threshold Construction

3.1 Data Structure Definition

Definition 3.1 (Threshold Structure). A threshold structure T = (o, [so, ..., Sp—1]) for a set S with
parameters (e, b, w) consists of:

« A binning seed o € [0,2")
o Per-bin seeds s; € [0,2%) for ¢ € [0,b)

The threshold is 7 = ¢ - 2%.

3.2 Construction Algorithm

Input: Set S, FPR ¢, bin count b, hash bits w, max trials T’
Output: Threshold structure 7 or failure
M 2%,
T4+ e- M,
// Level 1: Choose binning seed (any seed works)
o + RandomInt (0, M);
// Assign items to bins
fori+~ 0tob—1do
‘ Bz — Q);

end
foreach x € S do

i < hi(z||lo) mod b;

B; + B; U {x},
end
// Level 2: Find threshold seed for each bin
fori+ 0tob—1do

s; < FindSeed(B;, 1, T);

if s;, = 1 then

‘ return failure;

end
end
return (o, [sg,...,Sp—-1]);

Algorithm 1: MakeThresholdStructure

Input: Bin items B, threshold 7, max trials T'
Output: Seed s or L

if B =0 then
‘ return 0;
end

for s+ 0to7 —1do
valid < true;
foreach x € B do
if ha(x|s) > 7 then
valid < false;
break;
end
end
if valid then
return s;
end

end

return |;
Algorithm 2: FindSeed

3.3 Query Algorithm

Input: Item z, threshold structure 7 = (o, [so, ..., Sp—1])
Output: Boolean membership test result
// Level 1: Find bin
i < hi(z|lo) mod b;
// Level 2: Threshold test
return ho(z||s;) < T;
Algorithm 3: ThresholdQuery
The query requires exactly 2 hash operations: one for binning, one for threshold testing.

4 Theoretical Analysis

4.1 Query Correctness

Theorem 4.1 (Zero False Negatives). For any x € S, query(z) = 1.

Proof. Let © € S and let ¢ = hy(z|/c) mod b be its bin. By construction, the seed s; was chosen
such that ho(z||s;) < 7 for all z € B;. Since x € B;, the threshold test passes. [

Theorem 4.2 (Exact False Positive Rate). Under the random oracle model, for any x ¢ S:
Pr[query(z) = 1] =¢

Proof. Let = ¢ S and let i = hy(z|/c) mod b be its bin. The seed s; was computed based only on
items in B;, none of which equal x.

Under the random oracle model, ho(x||s;) is uniformly distributed in [0, M) and independent of
the values used during construction. Therefore:
T —
ST

Prlha(z|s;) < 7] = €

Note that this gives ezact equality, not an approximation. The Bloom filter FPR is only
approximately ¢; the threshold structure achieves € exactly.

4.2 Construction Time

Theorem 4.3 (Expected Seed Trials). For a bin with £ items, the expected number of trials to find
a valid seed is:
E[trials] = e~*

Proof. A seed s is valid if ho(x||s) < 7 for all £ items. Under the random oracle model, these events
are independent with probability € each. Thus:

Pr[seed valid] = &

The number of trials follows a geometric distribution with success probability €, giving expected
value 1/ef = . [
Corollary 4.4 (Total Construction Time). With b bins and mazimum bin size {, expected construc-
tion time is O(b-e~").

For fixed e¢, increasing the number of bins reduces items per bin but increases total seeds to
find. The optimal trade-off depends on the application.

4.3 Space Complexity
Theorem 4.5 (Space Usage). A threshold structure with b bins and w-bit seeds uses:
Space = (b+ 1) - w bits
Proof. The structure stores one binning seed (w bits) plus b bin seeds (b - w bits). [
Corollary 4.6 (Comparison to Bloom Filter). For n items with FPR ¢:
o Bloom filter: =~ 1.44nlogy(1/¢) bits
o Threshold structure: (b+ 1) - w bits

The threshold structure is more space-efficient when:

(b+1) -w< 144nlogy(1/e)

5 Optimality of Two Levels

One might ask: why exactly two levels? Could a different number of levels be better?

5.1 n-Level Threshold Structures

Definition 5.1 (n-Level Threshold Structure). An n-level threshold structure recursively partitions
items:

e Level 1 partitions into b; bins

e Level 2 partitions each bin into by sub-bins

e Level n stores threshold seeds for leaf bins

5.2 Trade-off Analysis

Theorem 5.2 (Two-Level Pareto Optimality). Among threshold structures with fived mazximum
items per leaf bin, the 2-level structure is Pareto optimal in the (space, query time) trade-off.

Proof. Consider the constraints:
e Query time: n hash operations for n levels
e Space: Approximately H?:_f b; internal nodes plus leaf seeds
For a 1-level structure (just threshold seeds, no binning):
e Query time: 1 hash
o But: must store all items’ seeds individually, space O(n - w)
For a 2-level structure:

e Query time: 2 hashes

» Space: (b+1)-w where b < n
For n > 2 levels:
e Query time: n hashes

e Space: Additional intermediate seeds, no savings over 2-level

The 2-level structure achieves the minimum query time that also achieves sublinear space in

5.3 Extreme Cases

At the extremes:

o log(n) levels: Could achieve O(logn) query time with minimal space per level, but query time

degrades significantly.

o 1 level: Minimal query time but O(n) space, defeating the purpose of a compact structure.

The 2-level structure occupies a sweet spot: constant query time with sublinear space.

6 Parameter Selection

6.1 Bin Count Selection

Given n items, FPR ¢, and maximum trials 7"

Theorem 6.1 (Bin Count Constraint). To ensure construction succeeds within T' trials per bin with

high probability:
b>

gmax

where lax = Lloggl(T)J = Llolgo(glfs)J ’

Proof. From Theorem expected trials for £ items is e ~¢. To have e ¢ < T

log T’
< log(1/2)

Taking the floor gives lpax, and b > n/lpax ensures no bin exceeds this size on average.

Example 6.2. For ¢ = 0.0625 = 1/16 and T = 10°:

log 10°
log 16

6 - log 10

lax =
e L 4 -log?2

=1) = [4.98) = 4

With n = 100 items, we need b > 25 bins.

6.2 Handling Random Variance

Due to random bin assignment, some bins will have more than the average number of items. Using
the balls-into-bins analysis:

Theorem 6.3 (Maximum Bin Size). When n items are randomly assigned to b bins, the mazimum
bin size is:
n n
bnax =~ — + O —logb
o~ v (T

To account for this variance, use more bins than the minimum required:

with high probability.

b> 2n

Emax

6.3 Optimal Algorithm

Input: n, e, T, w
Output: Recommended bin count
Umax < [log T/ log(1/e) ;
gtarget < max(l, fmax/2)§
b+ [2 : n/etargeth
return b;
Algorithm 4: OptimalBinCount

7 Perfect Hashing and Bernoulli Types

Threshold structures reveal a deep connection to perfect hashing.

7.1 Perfect Hash Functions

A perfect hash function (PHF) for a set S maps elements of S to distinct slots without collision. A
minimal PHF (MPHF) uses exactly |S| slots.

However, a PHF alone cannot test membership—it can only map known members to slots. To
test membership, we need additional information.

7.2 PHF with Fingerprints

The standard approach adds fingerprints: for each slot i, store a fingerprint f(z) of the item z that
hashes to slot i. Query: compute h(z), check if f(x) matches the stored fingerprint.

Theorem 7.1 (PHF+Fingerprint as Bernoulli Set). A perfect hash function with k-bit fingerprints
implements a Bernoulli set with:

« FPR=27"
e« FNR=0
o Space =n - (k+ c) bits, where ¢ = 2.5 for CHD

7.3 Threshold Structure as Implicit PHF

The threshold structure can be viewed as an implicit perfect hash function where:
o The “slot” for item x is determined by hi(z||c) mod b
o The “fingerprint check” is the threshold test ha(x||s;) < 7

The difference is that threshold structures store seeds per bin rather than fingerprints per item,
trading space efficiency for query structure.

7.4 Characterization

Theorem 7.2 (Threshold-PHF Equivalence). Threshold structures with b =n (one item per bin)
are equivalent to perfect hash functions with implicit fingerprints of size logy(1/e) bits.

This reveals that threshold structures interpolate between:
o Extreme 1: b = n, equivalent to PHF+fingerprints

o Extreme 2: b = 1, a single threshold seed (impractical due to construction time)

8 Experimental Evaluation

We implemented threshold structures in Python to validate theoretical predictions.

8.1 Implementation

The implementation uses:
o SHA-256 for hash computations (approximating random oracle)
e 32-bit hash outputs (w = 32)

o Automatic bin count selection using Algorithm

8.2 Construction Time Validation

We measured construction time for varying bin counts and item counts.

8.3 False Positive Rate Validation

We tested 10,000 non-member queries against threshold structures of various sizes.

Set Size Target ¢ Empirical FPR

100 0.0625 0.0621 £ 0.005
1000 0.0625 0.0627 = 0.002
100 0.01 0.0098 £+ 0.001

Table 1: Empirical FPR matches theoretical e.

The empirical FPR converges to the theoretical value as predicted by Theorem

Trials (log scale)

[Experimental data: trials vs items/bin]

Matches e~¢ prediction

Items per bin

Figure 1: Construction trials per bin vs items per bin for € = 0.0625.

8.4 Space Comparison

n € Bloom (bits) Threshold (bits)
100 0.0625 076 6,432
1000 0.0625 5,760 16,032
100 0.001 1,440 6,432

Table 2: Space comparison: threshold structures require more bins for construction reliability.

For moderate set sizes and FPR values, Bloom filters are more space-efficient. Threshold structures
offer advantages in:

o Query time (O(2) vs O(logy(1/¢)))
o Exact FPR guarantees

o Simpler query logic (2 hash calls, one comparison)

9 Related Work

9.1 Bloom Filters and Variants
Bloom filters [? | remain the most widely-used approximate membership structure. Variants include:

e Counting Bloom filters: Support deletions via counters instead of bits
o Compressed Bloom filters [? |: Trade computation for space

e Cuckoo filters: Support deletion with similar space efficiency

See Broder and Mitzenmacher [? | for a comprehensive survey.

9.2 Perfect Hashing

Minimal perfect hash functions (MPHFs) achieve O(n) space with O(1) query time for exact
membership (with fingerprints). CHD achieves approximately 2.5 bits per item. However, MPHFs
require storing fingerprints separately for membership testing.

10

9.3 Encrypted Search

Threshold structures are motivated by encrypted search applications [? ? |. The O(2) query time is
valuable when each hash computation involves expensive cryptographic operations.

9.4 Bernoulli Types

This work extends the Bernoulli types framework [? ?], which provides a principled approach to
approximate computation with controlled error rates.

10 Conclusion

We introduced threshold structures, a novel approach to approximate membership testing that
achieves:

e O(2) query time: Two hash operations regardless of target FPR

« Exact FPR: False positive rate equals € exactly

e Zero false negatives: Members always pass

e Simple construction: Deterministic algorithm with analyzable complexity

Our theoretical analysis proved the optimality of two levels and characterized the space-
computation trade-off. Experimental validation confirmed theoretical predictions.

10.1 Trade-off Summary

Threshold structures occupy a different point in the design space than Bloom filters:
o Better: Constant query time, exact FPR, simpler queries
o Worse: Higher space for small/moderate sets

o Equivalent: Zero false negatives, similar theoretical foundations

10.2 Future Work

o Dynamic updates: Extending threshold structures to support insertions/deletions
o Parallel construction: Exploiting bin independence for parallel seed search

Hybrid structures: Combining threshold and Bloom approaches

e Applications: Deployment in encrypted search systems

10.3 Availability
A Python implementation is available as the bernoulli-types library, providing threshold structures

alongside Bloom filters within the unified Bernoulli types framework.

References

11

	Introduction
	Motivation: Secure Indexes and Encrypted Search
	Contribution: Two-Level Threshold Structures
	Results Overview
	Paper Organization

	Preliminaries
	Bernoulli Types Framework
	Random Oracle Model
	Bloom Filters as Baseline

	Two-Level Threshold Construction
	Data Structure Definition
	Construction Algorithm
	Query Algorithm

	Theoretical Analysis
	Query Correctness
	Construction Time
	Space Complexity

	Optimality of Two Levels
	n-Level Threshold Structures
	Trade-off Analysis
	Extreme Cases

	Parameter Selection
	Bin Count Selection
	Handling Random Variance
	Optimal Algorithm

	Perfect Hashing and Bernoulli Types
	Perfect Hash Functions
	PHF with Fingerprints
	Threshold Structure as Implicit PHF
	Characterization

	Experimental Evaluation
	Implementation
	Construction Time Validation
	False Positive Rate Validation
	Space Comparison

	Related Work
	Bloom Filters and Variants
	Perfect Hashing
	Encrypted Search
	Bernoulli Types

	Conclusion
	Trade-off Summary
	Future Work
	Availability

