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Abstract

We develop a general likelihood framework for estimating component reliability from series
system data when the component cause of failure is masked. The framework applies to any
parametric specification of component hazard functions, including covariate-dependent hazards.
Three sufficient conditions on the masking mechanism—that the candidate set contains the
true cause, that masking probabilities are symmetric across candidates, and that masking prob-
abilities are independent of the component lifetime parameters—allow the unknown masking
distribution to be eliminated from the likelihood. We present the resulting likelihood contribu-
tions for exact failures with masked cause, right-censored, left-censored, and interval-censored
observations. The framework serves as a foundation for distribution-specific inference, and we
provide a summary of instantiations for five common lifetime distribution families.

1 Introduction

Estimating the reliability of individual components within a series system is a fundamental problem
in reliability engineering [Agustin, 2011]. A series system fails when any one of its components
fails, so the system lifetime is determined by the weakest component. In many practical settings,
only the system-level failure time is observable—the specific component that caused the failure
may be unknown or only partially identified. This masking of the failure cause arises naturally in
industrial diagnostics, field warranty data, and accelerated life testing, where post-failure inspection
is infeasible, costly, or imprecise.

A common diagnostic outcome is a candidate set: a subset of components that plausibly contains
the failed component. When the candidate set is a proper subset of all components but not a
singleton, the failure cause is partially masked. When the candidate set is the full component set,
the cause is fully masked. When it is a singleton, the cause is exactly identified.

The purpose of this paper is to provide a self-contained reference for the likelihood framework
for masked failure data in series systems. We present the likelihood under three sufficient conditions
(C1-C2-C3) on the masking mechanism that allow the unknown distribution of candidate sets to
be eliminated from the likelihood function. The resulting likelihood is expressed entirely in terms
of component reliability and hazard functions, enabling maximum likelihood estimation for any
parametric specification of component hazard functions.

The framework is deliberately general: we derive the general likelihood structure in terms of
component hazard functions, without specializing to any particular distributional form. This work
grew out of an earlier master’s project [Towell, 2023b] that developed the likelihood model for
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Weibull series systems with simulation studies; the present paper extracts and generalizes the core
likelihood framework. Distribution-specific treatments—including derivations of score equations,
Fisher information, and simulation studies—are deferred to companion papers that cite the present
work. In Section 7, we provide hazard function specifications for five common families (Exponential,
Weibull, Pareto, Log-normal, and Gamma), enabling practitioners to apply the framework directly.

1.1 Related Work

The C1-C2-C3 conditions and the basic masked-data likelihood have a substantial history in the
reliability literature. Miyakawa [1984] introduced the conditions for analyzing incomplete competing
risks data. Usher and Hodgson [1988] formulated the MLE problem for masked series system
data under these conditions, and Usher et al. [1993] derived exact maximum likelihood estimates
for exponential components. Guess et al. [1991] established that the conditions hold in many
practical diagnostic scenarios and developed component reliability estimation under partial failure
information. Sarhan [2001] extended reliability estimation to broader settings with masked system
life data. Most of this prior work specialized to the Exponential or Weibull families.

The present paper does not claim the C1-C2-C3 conditions or the basic likelihood derivation as
novel contributions. Rather, its role is to serve as a foundational reference that provides a unified
treatment of the framework in a single self-contained document. The value lies in the unified
presentation, the extension of the likelihood to all four censoring types (exact, right, left, and
interval), the identifiability analysis, and the five-family instantiation table (Section 7). Companion
papers and software packages can cite this work for the general theory while focusing on distribution-
specific derivations and simulation studies.

Non-parametric competing risks methods—including the Kaplan—Meier estimator, the Nelson—
Aalen cumulative hazard estimator, and the Cox proportional hazards partial likelihood—require
observing which event type occurred in order to separate cause-specific hazard contributions. Mask-
ing eliminates precisely this information: the candidate set does not identify the cause, so partial
likelihood and non-parametric estimators cannot be applied directly. The parametric structure of
hj(t; @;) is what makes the problem tractable under masking—it provides enough structure for the
likelihood to separate component hazards even when the data cannot. Our framework is therefore
parametric by necessity (for identifiability under masking), not merely by convenience.

The remainder of this paper is organized as follows. Section 2 establishes the series system
model and derives the system reliability, density, and hazard functions. Section 3 derives the distri-
bution of the component cause of failure. Section 4 defines the observational model, including the
masked data notation and a taxonomy of observation types. Section 5 presents the three conditions
and derives the core likelihood contribution—the central result of this paper. Section 6 discusses
maximum likelihood estimation in the general framework. Section 7 provides hazard function spec-
ifications for common parametric families. Sections 8 and 9 discuss extensions, relaxations, and
concluding remarks. Table 1 summarizes the principal notation used throughout the paper.

2 Series System Model

Consider a system composed of m components arranged in a series configuration. Each component
and system has two possible states: functioning or failed. We assume throughout that all component
lifetime distributions are absolutely continuous with respect to Lebesgue measure (i.e., each Tj; has
a density). We observe n independent systems (which need not be identically distributed, since
systems may differ by covariates). The lifetime of the ith system is denoted by the random variable



Table 1: Summary of notation.

Symbol Description
m Number of components in the series system
T; System lifetime (random variable) for the ith system
T;; Lifetime of component j in system
K; Component cause of system failure
hj(t; 6;) Hazard function of component j
R;(t;0;) Reliability function of component j
fi(t;6,) Density function of component j
0 Full parameter vector (01,...,60,,)
D; = (s;,wi, ¢, ;) Observation tuple for system 4
S; Observed time (t;, 7;, or interval (a;,b;))
w; € {E,R,L,I}  Observation type label
¢ €{1,...,m} Candidate set (possible failure causes)
Bi Masking probability for observation ¢
ER,L,T Index sets by observation type
£(0) Log-likelihood function

T; and the lifetime of its jth component by 7T;;. We assume that the component lifetimes within a
single system are statistically independent but not necessarily identically distributed.

Remark 1 (Component independence). Component independence is a standard assumption in
the series system and competing risks literature, but it rules out common-cause failures, load-
sharing, and environmental coupling. The entire framework developed below—system reliability
as a product of component reliabilities (Theorem 1), system hazard as a sum of component haz-
ards (Theorem 3), and the cause-of-failure distribution (Theorem 6)—depends critically on this
assumption. Extensions to dependent competing risks exist but require copula models or other
dependence structures and face fundamental identifiability challenges: Tsiatis [1975] showed that,
without independence, marginal component distributions are not identifiable from system lifetime
data alone. Such extensions are beyond the scope of this paper.

A series system fails when any component fails, so the system lifetime is
Ty = min{Ti1, Tia, ..., Tim }- (1)

The reliability function of the ith system is Ry, (t) = Pr{T; > ¢}, the probability that the system
survives beyond time ¢. The probability density function (pdf) of T} is fr,(t) = —% Ry, (t), and the
hazard function is

. f T; (t)

B Rr, (t) ’
representing the instantaneous failure rate at time ¢ given survival to time ¢.

Each component’s lifetime distribution is specified by its hazard function h;(t; ;, x;), where 8;
is a finite-dimensional parameter vector and x; is an optional covariate vector for the ¢th system.

hr,(t) (2)



The cumulative hazard, reliability, and density follow:

t
H;(t; 05, ;) —/ hj(u; 05, x;) du, (3)
0
Rj(t;ej,wi) :exp{—Hj(t; aj,:DZ‘)}, (4)
fi(t; 05, @) = hj(t; 05, x;) R;j(t; 0, ;). (5)

This specification subsumes standard parametric families and accommodates non-standard haz-

ard shapes (bathtub curves, piecewise-constant rates) and covariate-dependent hazards such as

proportional hazards models. When covariates are absent, we suppress x; and write h;(t; ;).
The overall parameter vector is

0=(01,...,0n), (6)
belonging to a parameter space 2.

Theorem 1 (System reliability). The series system has a reliability function given by
0) = [ Ri(%:6;). (7)
j=1

Proof. Since the system fails when any component fails, {T; > t} = {T;; > t,...,T;n > t}. By the
independence of component lifetimes,

Ry,(t60) = Pr{Tyy > t}---Pr{Ti > t} = [[ Ri(%:6;). O
j=1

Theorem 2 (System pdf). The series system has a pdf given by

T.(t; 0) i (t:6, ﬁRktBk) (8)
B "

Proof. Differentiating the system reliability function,

d m
fr,(t;0) = ‘dth t;0

By the product rule applied recursively,

HR (t:6) Z( CR(1:0)) T] mut:00) = S 000 [ (0. O
j=1 k=1 7=1 k=1
k#j k#j

Theorem 3 (System hazard). The series system has a hazard function given by

hr,(t;6) = ihj(t;ﬁ’j)- (9)
j=1

Proof. By definition, hr,(t;0) = fr,(t;0)/Rr,(t;0). Substituting from Theorems 2 and 1,
Do fit:05) TTitr Re(t:05)  m m
L =Y. = J =" hy(t:6)) O

hTi(t;O) = m
Hj:l R](t70.7) j=1 ] j=1




Remark 2. Combining the hazard and reliability representations, the system pdf admits the
convenient form

fr.(t;0) = hr.(t; 0) R, (; 0) {Zh (t:0;) }{ﬁle(t;aj)}, (10)
i

which we use extensively in subsequent derivations.

3 Component Cause of Failure

Whenever a series system fails, precisely one component is the cause (almost surely, since the
component lifetime distributions are assumed to be absolutely continuous with respect to Lebesgue
measure). We denote the component cause of failure of the ith system by the discrete random
variable K;, with support {1,...,m}. The event K; = j means that component j had the shortest
lifetime among all components of the ith system.

Theorem 4 (Joint distribution of K; and T;). The joint pdf of the component cause of failure K;
and the system lifetime T; is

i m (3, 4:0) = hy(t:0;) [ | Ru(t; 00). (11)
=1

Proof. The event {K; = j,T; = t} requires that component j fails at time ¢ while all other compo-
nents survive past time t. By the independence of component lifetimes,

from (G, 1:0) = f(t:05) [ [ Rult; 60).
1=1
%]
Since f;(t;0;) = hj(t; 0;)R;(t; 0;), substituting gives
fr, 1, (4, t;0) = h;(t;0;)R;(t;0;) HRZ (t;0,) = h;(t;0;) H (t;0)). O

%

Theorem 5 (Marginal probability of cause). The probability that the jth component is the cause
of failure is

Pr{Ki:j}:Ee[ hy(T3; 05) }

. 12
T (T 6) (12)

Proof. Marginalizing the joint pdf over the system lifetime,
Pr{K, = j} = / Fre.m, (s £ 0) dt — / hi(t:0,) Rr (1 0) dt.
0 0

Since Ry, (t;0) = fr,(t;0)/h1,(t;0), we can rewrite this as

oo [Thi8y) e [ (T 65)
Pe(si = j) = | (1 0) T 0) A= E"[Zﬁl hi(T; en]' =



Theorem 6 (Conditional probability of cause given failure time). Given that the system fails at
time t;, the probability that the jth component is the cause is

hj(ti;0;)

Pr{K,=j|T,=t;} = =10 __
3 J| J Doy lulti; 01)

(13)

Proof. By the definition of conditional probability,

Pr{K; = j | T = t;} S (G, ti:0) hj(tﬁej)nz%l Ry(ti;60) _ Zj(ti;0j> ' 0
fr,(t:;0) hr (t; 0) T2y Ra(ts; 00) 222y Pu(tis 01)
Theorem 6 is a conditional version of Theorem 5; it is also the operationally important result,
since the likelihood (Section 5) depends on the conditional cause probability given the observed
failure time rather than on the marginal cause probability of Theorem 5. The conditional probability
of cause is determined entirely by the ratio of the component’s hazard to the total system hazard at
the observed failure time. In a well-designed series system, the designer aims to balance failure rates
so that no single component dominates, resulting in roughly balanced cause-of-failure probabilities
across components, though this ideal is not always achieved in practice.

4 QObservational Model

In practice, we do not observe the component lifetimes directly. Instead, we observe system-level
data that may be subject to two forms of masking: censoring of the failure time and masking of
the failure cause.

4.1 Observation Types

We consider four types of observations that may arise in reliability studies of series systems [see
Klein and Moeschberger, 2005, for background on censored data in survival analysis]:

1. Exact failure with candidate set. The system is observed to fail at time #;, and a candidate
set ¢; C {1,...,m} is observed that is indicative of the component cause of failure. When
lci| = 1, the cause is exactly identified; when |¢;| > 1, the cause is masked.

2. Right-censored. The system is still functioning at observation time 7;; we know only that
T > .

3. Left-censored. The system has already failed before observation time 7;; we know only that
T; < 7;. A candidate set ¢; may also be observed if a diagnostic is performed at inspection
time 7; to partially identify the failure cause.

4. Interval-censored. The system failure occurred in the interval (a;,b;); we know only that
a; < T; < b;. A candidate set ¢; may accompany the observation when a diagnostic is
performed at one of the inspection times.

4.2 Masked Data Notation

Each observation is represented as a tuple D; = (s;,w;, ¢;, x;), where:

e s; encodes the observed time information: a failure time ¢;, a censoring time 7;, or an interval

(ai, bi);



o w; € {E,R,L,I} is a label indicating the observation type: exact failure (£), right-censored
(R), left-censored (L), or interval-censored (1);

e ¢; C{1,...,m} is the candidate set, relevant whenever a failure is known to have occurred (ex-
act, left-censored, or interval-censored observations). When no cause information is available,
¢i ={1,...,m}. For right-censored observations (no failure observed), ¢; = () (no component

has failed); and
e x; is the covariate vector for the ith system (possibly empty when no covariates are recorded).
The complete data set is D = {Dy, ..., Dy}, assumed to be independent draws from the obser-
vational model.

4.3 Likelihood Contributions by Observation Type

Each observation type contributes differently to the likelihood function L(6) = [[;, L;(@). The
likelihood contributions depend on three conditions developed in Section 5; Table 2 previews the
final results for reference.

Table 2: Likelihood contributions by observation type under Conditions C1-C2-C3 (Section 5).
All rows involving a failure (exact, left-censored, interval-censored) carry a candidate set ¢; C

{1,...,m} and require C1-C2-C3. The right-censored row is a standard survival analysis result.
Observation type Likelihood contribution L;(6)
m
Exact failure + candidate set H Ri(t:;0;) - Z hj(ti; 6;)
=1 JEC;
m
Right-censored H R;(1:;0;)
j=1
Left-censored + candidate set / hj(t; 6;) H Ry(t;0;)dt
0 e =
JE€c; =1
b; m
Interval-censored + candidate set / Z hj(t; 0;) H Ry(t;0;)dt
4 jee =1
When no cause information is available (¢; = {1,...,m}), the left-censored and interval-censored

contributions reduce to the familiar forms 1-[]72, R;(7;6;) and [[}2, Rj(ai; 0;) =172, R;(bi; 0;),
respectively, since > 10, h;(t;6;) [[}Z, Ri(t; 01) = fr,(t; ) by Equation (10).

The right-censored contribution follows directly from the system reliability function (Theo-
rem 1). The remaining three rows—all involving a confirmed failure—require the three conditions
developed in Section 5.

4.4 Dependency Structure

Figure 1 depicts the dependency structure of the data generating process. Observed quantities
(Si, wi, Ci, ;) are shown as shaded nodes; latent quantities (component lifetimes Tj1, ..., Tip, the
system lifetime T;, and the component cause of failure K;) are shown as open nodes. Solid arrows
denote structural dependencies; dashed arrows denote influences that the C1-C2-C3 conditions
allow us to ignore in the likelihood. The covariate vector x; influences both the component lifetimes



(through the hazard functions h;(t;6;,;)) and potentially the candidate set C; (e.g., when the
operating environment affects diagnostic quality). The conditions in Section 5 allow us to construct
a likelihood that does not require modeling the distribution of C;.

|
@

Figure 1: Dependency model for the data generating process. Shaded nodes are observed; open
nodes are latent. Solid arrows are structural dependencies; dashed arrows indicate influences that
are eliminated from the likelihood under C1-C2-C3.

4.5 Example: Masked Data

Table 3 shows an example of masked data for a 3-component series system with a right-censoring
time 7 = 5. Systems 5 and 6 are right-censored (their failures were not observed before time 7).
System 2 has a singleton candidate set, so its cause of failure is exactly identified. The remaining
failed systems have candidate sets of size 2, representing partial masking.

Table 3: Example of right-censored lifetime data with masked component cause of failure for a
3-component series system (7 = 5).

System  s;  w; Ci

<

1 1.1 E {1,2}
2 1.3 E {2}
3 26 E {2,3}
4 3.7 E {1,3}
5 50 R 0

6 50 R 0

5 The C1-C2-C3 Likelihood

We now derive the likelihood contribution for an observation where the system failure time is known
but the component cause of failure is masked by a candidate set. The derivation below recapitulates
and extends the classical argument [Miyakawa, 1984, Usher and Hodgson, 1988] in a unified, general
form.



5.1 Joint Distribution of 7;, K;, and C;

Our goal is to estimate 6 from observed data D; = (s;,wj, ¢, ;). When the system failure is
observed (w; = E), we observe the system failure time ¢; and a candidate set ¢;. The joint pdf of
the system lifetime 7T; and the candidate set C; is

fr.ci(tisci;0) = fr,(ti;0) 1:;1“{@ =¢ | T; = t;}. (14)

While we assume the system lifetime pdf fr,(¢;;6) is known (up to parameters), the conditional
distribution Prg{C; = ¢; | T; = t;} is generally unknown—it depends on the diagnostic procedure,
which we do not model.

Since C; and K; are statistically dependent, we can introduce K; into the analysis. By Theo-
rem 4, the joint pdf of T; and K; is fr, k,(ti,7;0) = h;(ti;0;) [ 1% Ri(ti; 0;). The joint pdf of T;,
K;, and C; is therefore

m

fry ke, (tis s iz €) = hy(ti; 0, H (ti:01) - PriC; = i | T; = t;, K = j}- (15)

Marginalizing over K;,
fr.e.(ti,ci; 0 HRZ ti;61) Z{hj(ti§0j) PriCi=c | Ti =t Ki = j}}- (16)

The unknown conditional probability Pyp{C; = ¢; | T; = t;, K; = j} prevents direct use of
this expression for likelihood-based inference. We now introduce three conditions that successively
simplify Equation (16) until the unknown masking distribution drops out entirely.

5.2 Condition 1: Candidate Set Contains the True Cause

Condition 1 (C1). The candidate set C; contains the index of the failed component:
IZr{Ki €C}=1 (17)

Condition 1 is the minimal requirement for the candidate set to carry useful information about
the failure cause: the true cause must not be excluded. In practice, real diagnostics work by
narrowing down from the full component set—eliminating candidates that pass functional checks—
rather than constructing the candidate set from scratch. Because exclusion of the true cause would
require the diagnostic to affirmatively misidentify a functioning component as the sole failure site,
C1 holds whenever the diagnostic is competent in this limited sense.

Two common diagnostic architectures illustrate the point. First, automotive on-board diag-
nostics (OBD) fault codes are generated by the failing module itself: a voltage exceedance or
communication timeout triggers the code, so the candidate set inherently includes the true cause.
Second, hierarchical troubleshooting trees prune branches based on pass/fail tests at each level; the
true cause remains in the surviving subtree at every step unless a test yields a false negative, which
is a calibration failure rather than a structural feature of the diagnostic.

In short, C1 asks for diagnostic competence—not actively wrong—rather than diagnostic preci-
sion—exactly right. Violating C1 is a pathological scenario (the diagnostic positively excludes the
failed component) that would undermine any analysis, masked or otherwise.



What C1 buys. Under Cl, if j ¢ ¢; then Prp{C; = ¢; | T; = t;, K; = j} = 0. The summation in
Equation (16) therefore reduces from {1,...,m} to ¢;:

ti,ci;0 (ti; 01) hj(ti;05) PriCi = c; [ Ti = t;, K = j} ¢ 1
et HRZ 0]t 0) prici =i Ao

JEC;

What breaks without C1. Without C1, the summation must range over all m components,
and the likelihood depends on the masking probabilities for components outside the candidate set.
This means the likelihood cannot be simplified without modeling the full masking mechanism.

5.3 Condition 2: Symmetric Masking Within the Candidate Set

Condition 2 (C2). Given an observed system failure time 7; = ¢; and candidate set ¢;, the masking
probability is the same regardless of which component in ¢; is the true cause:

PriCi=c|Ti=t;, Ki = it = PriCi=ci|Ti =t;, Ki =j} forall 73" € ci. (19)

Condition 2 is a requirement on the masking mechanism, not merely on the observed data: it
must hold for all candidate sets ¢; that the mechanism can produce, not just the particular sets
realized in the sample. When |¢;| = 1 (a singleton candidate set), C2 is satisfied vacuously—the
condition is non-trivial only when |¢;| > 2. In words, C2 requires that the diagnostic does not
discriminate between components within the candidate set: given that a particular candidate set
is reported, no member of that set is favored over another. Symmetry arises naturally whenever
masking is determined by structural grouping—subsystem, module, or physical region—rather than
by component-specific properties. Components that share a group are indistinguishable to the
diagnostic precisely because the diagnostic operates at the group level.

Two additional examples reinforce this pattern. In avionics maintenance, field technicians
replace line-replaceable units (LRUs): every component inside the unit is equally suspect because
the diagnostic identified the unit, not the component. In industrial settings, SCADA monitoring
systems report alarms at the subsystem level—e.g., “pump station fault”—without distinguishing
which element (motor, valve, seal) triggered the alarm; the candidate set is the group, and all
members are symmetric.

We acknowledge that C2 is the condition most likely to be violated in practice, since partial
diagnostic information can make one candidate more plausible than another. When asymmetry
is suspected, a practical mitigation is to redefine the candidate set at the finest resolution where
symmetry still holds, effectively trading a smaller candidate set for a valid application of C2.

What C2 buys. Under Cl and C2, the masking probability Pig{C; = ¢; | T; = t;, K; = j} is
constant for all j € ¢; and can be factored out of the summation in Equation (18):

frie(tici@) =Pr{Ci=ci [Ty = ti, K; = j }HRl ti;00) Y hy(ti;0;), (20)
Jjec;
where 5’ is any element of c;.
What breaks without C2. Without C2, the masking probabilities remain inside the summa-

tion, coupling the hazard contributions with component-specific masking weights. The MLE then
depends on the unknown masking probabilities, which must be jointly estimated or modeled.

10



5.4 Condition 3: Masking Independent of 6

Condition 3 (C3). The masking probabilities, conditioned on the failure time and the component
cause of failure, do not depend on the system parameter 6:

Bi=Pr{Ci=c; | T; =t;, K; = j'} (21)
is not a function of 8.

Condition 3 states that the diagnostic procedure’s behavior is determined by factors external
to the component lifetime parameters. The masking probability 8; may depend on the failure time
(for exact failures, where the diagnostic is performed at or near the observed failure time), the
diagnostician, the testing equipment, or other covariates—but not on 8. For censored observations,
the diagnostic is performed at the inspection time rather than at the unknown failure time; see
Remark 3 below. The justification is fundamentally causal: the diagnostic tool was designed and
calibrated before any failures were observed, so its behavior cannot depend on the unknown 6 we
are estimating. For instance, OBD voltage thresholds are hard-coded at manufacture; a vibration
sensor’s frequency band is set during installation. Neither adapts to the lifetime parameters of the
components it monitors.

Condition 3 is closely related to the concept of ignorability in the missing-data framework of
Little and Rubin [2002]. In our setting, the “missingness” is the loss of exact cause information
through masking; C3 ensures that the masking mechanism is ignorable for likelihood-based infer-
ence, in the sense that the conditional distribution of the candidate set need not be modeled when
maximizing the likelihood over 6 [see Little and Rubin, 2002, Ch. 6].

When covariates x; are present, C3 requires that the masking probabilities do not depend on
0 given the covariates and failure time. If the same covariates influence both the failure rate and
the diagnostic quality (e.g., an extreme operating environment that accelerates failures and also
degrades sensor accuracy), the practitioner should verify that the masking mechanism remains
ignorable after conditioning on ;.

What C3 buys. Under C1, C2, and C3, the joint pdf becomes
m
froc(tici;0) = Bi [ [ Ru(t; 00) > hy(ti;0;). (22)
=1 Jj€c;

When we view this as a function of @ (with the data fixed), §; is a constant multiplier that does
not affect the location of the maximum. The likelihood contribution is therefore

Li(0) o< [ Ru(ti;00) Y hy(ti; 6;). (23)
=1 JEC;

What breaks without C3. Without C3, the factor 5; depends on @ and cannot be dropped. The
practitioner would need to model the dependence of the masking mechanism on 8—a substantially
harder problem that requires additional data or assumptions about the diagnostic process.

5.5 Real-World Example

To illustrate how the three conditions arise in practice, consider an electronic device with three
components arranged in a series configuration. Components 1 and 2 are on a shared circuit board,

11



while component 3 is separate. A diagnostic tool isolates the failure to either the shared circuit
board or the individual component. A more detailed board-level inspection sometimes pinpoints
the specific failed component; let p € (0,1) denote the probability that this inspection succeeds.
The conditional probabilities for candidate sets are:

if c; ={j} and j € {1,2},
1—p ife¢={1,2} and j € {1,2},
if ¢; = {3} and j =3,

0 otherwise.

Pr{Ci=c¢|Ti=t,K =j} =

This diagnostic tool satisfies all three conditions:

e C1: The candidate set always contains the failed component—the tool correctly isolates
failures to the correct subsystem (each possible candidate set contains the true cause).

e C2: For the candidate set {1,2}, the masking probability is the same whether component 1
or component 2 failed (both equal 1—p). For singleton candidate sets {1} or {2}, Condition 2
is satisfied trivially.

e C3: The masking probabilities depend only on the diagnostic tool (through p) and not on
the component lifetime parameters 6.

The parameter p > 0 is essential for identifiability: when the board-level inspection never
succeeds (p = 0), components 1 and 2 always appear together in every candidate set and their
individual parameters cannot be separated—see Section 5.8 for a detailed discussion. Any p > 0
ensures that some observations produce singleton candidate sets {1} or {2}, providing the infor-
mation needed to distinguish the two components.

According to Guess et al. [1991], many industrial diagnostic scenarios naturally satisfy these
conditions, reinforcing the practical applicability of the framework.

5.6 Censored Observations with Candidate Sets

The C1-C2-C3 derivation in Sections 5.2-5.4 applies to any observation where a failure is known
to have occurred. Equation (22) gives the joint density of the failure time and candidate set at a
specific time t;. For left-censored and interval-censored observations, the failure time is not known
exactly, so we integrate over the admissible range.

Remark 3 (Diagnostic timing and the masking probability). For an exact failure, the diagnos-
tic may be performed at or near the observed failure time ¢;, so 8; = [(t;) is evaluated at a
known point and is a scalar constant in the likelihood. For censored observations, the diagnos-
tic is performed at the inspection time—when the system’s failed state is discovered—not at
the unknown failure time 7;. (For interval-censored observations, this is typically the later in-
spection time b;, at which the failure is first detected.) The masking probability is therefore
B; = Pr{C; = ¢; | system failed by inspection, K; = j'}, which does not depend on the integration
variable ¢t. This is the natural model: inspectors diagnose the current state at inspection time and
do not have access to the unknown failure time. Consequently, 3; factors out of the integrals in the
left-censored and interval-censored likelihood contributions below, and by Condition 3 it does not
depend on 8, so it may be dropped.

12



Theorem 7 (Left-censored likelihood contribution under C1-C2-C3). Under Conditions 1-3, if
the ith system is known to have failed by time 7; with candidate set c;, the likelihood contribution is

/ > hy(t; 0;) Hthel (24)

Jeci

Proof. By Equation (22), the joint density of the failure time and candidate set at time ¢ is
Bidjee; hi(t:05) [[}2, Ri(t;61). Since the failure time is known only to satisfy T; < 7, we in-
tegrate over ¢t € (0,7;]. As noted in Remark 3, the diagnostic is performed at inspection time, so
B; does not depend on the integration variable ¢ and factors out of the integral. By Condition 3,
B; does not depend on 8 either, so it is a constant factor that may be dropped. O

Theorem 8 (Interval-censored likelihood contribution under C1-C2-C3). Under Conditions 1-3,
if the ith system failed in the interval (a;, b;] with candidate set ¢;, the likelihood contribution is

/ > hi(t:6; Hthal (25)

t jEc

Proof. The argument is identical to the proof of Theorem 7—with [3; again constant by the
diagnostic-timing reasoning of Remark 3—but with the integration domain restricted to (a;, b;]. O

Remark 4. When no cause information is available (¢; = {1,...,m}), these contributions reduce
to the standard censored-data forms. For the left-censored case,

/ Zhj(t;ej)HRl(t;el)dt:/ fTi(t§9)dt:1_HRj(Ti;aj)’
0 5= =1 0 j=1

by Equation (10). Similarly, the interval-censored contribution reduces to
H Rj(a;; 0 HR (bi; 0;)

5.7 Combined Likelihood

We now assemble the full likelihood from the individual contributions (Equation (23), Theorems 7—
8, and the right-censored case from Theorem 1). Let &€ = {i : w; = E}, R = {i : w; = R},
L ={i:w;=L},and T = {i : w; = I} denote the index sets of observations that are exact failures,
right-censored, left-censored, and interval-censored, respectively.

Theorem 9 (Likelihood under C1-C2-C3). Under Conditions 1-3, the likelihood for the observed
data D = {Dy,...,Dy} is

g[ﬂmtz,e, S o, }Hjﬁ (7316 ]
xg[/ gh (t;0;) 1:‘1 (t;:0;)d Lez[/az];h (t;0;) f[lRl(t;Ol)dt]. (26)

Proof. Each factor follows from the corresponding individual result: the exact-failure contribution
from Equation (23), the right-censored contribution from Theorem 1, the left-censored contribution
from Theorem 7, and the interval-censored contribution from Theorem 8. Independence across
systems gives the product. O
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5.8 Identifiability

Before addressing identifiability within our framework, we note the classical competing risks re-
sult of Tsiatis [1975]: without the component independence assumption (Remark 1), the marginal
component lifetime distributions are not identifiable from system lifetime data alone—even with
complete observation of the failure cause. Our framework inherits identifiability from the inde-
pendence assumption, which allows the system reliability to factor as a product of component
reliabilities (Theorem 1). Given independence, the identifiability question reduces to whether the
observed candidate sets provide enough information to separate the component parameters.

Definition 1 (Candidate-set separability). Let S denote the collection of candidate sets that
occur with positive probability under the masking mechanism. We say the masking mechanism is
separating if, for every pair of distinct components j # 5, there exists a candidate set ¢ € S such
that j € ¢ and j' ¢ ¢. When this condition fails for some pair (j,j')—that is, j € ¢ <= j' € ¢ for
every ¢ € S—we say j and j’ are diagnostically confounded.

The following theorem shows that separability is the key condition governing identifiability
under C1-C2-C3.

Theorem 10 (Identifiability under C1-C2-C3). Let h;(t;0;) be the hazard function for compo-
nent j, where @ = (01,...,0,,) € © CRP is the full parameter vector, and suppose each component
family is individually identifiable: h;(-;0;) = hj(-;HS-) for all t > 0 implies 8; = 9;-. Under
C1-C2-C3:

(a) Necessary condition. If components j and j' are diagnostically confounded (Definition 1),
then 0; and 6; are not separately identifiable from the observed-data likelihood. Specifically,
any reparametrization preserving h;(t;0;) + hj(t;6;) for all t > 0 yields the same likelihood
value.

(b) Sufficient condition. If the masking mechanism is separating (Definition 1), and at least
some observations are exact failures (type E), then the parameter vector 0 is identifiable
for any parametric family whose hazard functions {hi,...,hpy} are linearly independent over

(0,00).

Proof. Part (a). Suppose j € ¢ <= j' € c for every ¢ € §. Then in every exact-failure
likelihood contribution R(;) > ¢, hi(ti) (Equation 23), the hazards h; and hj appear as a sum
hj(ti) + hj (t;) wherever they appear at all. The survival factor R(t;) = exp(— Y, H(t;)) likewise
depends on Hj(t;) + Hj (t;) only through their sum. The same holds for right-, left-, and interval-
censored contributions (Table 2), since all involve R(t) and »_, . hi(t). Hence the likelihood L(8)
depends on 6; and 6; only through the sum h; + hj, and any reallocation preserving this sum
leaves L unchanged.

Part (b). Suppose the masking mechanism is separating and let 8 # 0’ with L(0) = L(0') for
all data sets. Then in particular, for a data set consisting of a single exact failure at time ¢ with
candidate set ¢, the log-likelihood equality gives

=D H(t) +log Y hy(t) =—>  Hj(t) +log > hi(t) (27)
l JjEC l JjEC

for all t > 0 and all ¢ € S, where h; = h;(-;0;) and h; = h;(-;0}). Differentiating (27) with
respect to t for two candidate sets ci,co € S with j € ¢1, j ¢ co (which exist by separability)
and subtracting yields a relation that isolates the contribution of component j. Specifically, from
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the survival terms we obtain ), h(t) = >, hj(t), and from candidate sets separating j we obtain
that hj;(t) = h}(t) for all t > 0 whenever hy,...,hy, are linearly independent. By the individual
identifiability assumption, 6; = 0} for each j. O

Part (a) states that diagnostically confounded components are fundamentally unresolvable: the
likelihood surface has a ridge along all reparametrizations of the confounded pair, producing an
infinite family of equivalent maximizers rather than a unique MLE. Part (b) provides a checkable
condition: the analyst needs only inspect the candidate-set structure S to verify separability.

Remark 5 (Linear independence of hazard functions). The linear independence condition in The-
orem 10(b) holds generically for all families in Table 4. The Weibull hazard h;(t) o t*~! with
distinct shapes k; yields linearly independent power functions. For the exponential family (k; = 1
for all j), the hazards are constant and hence linearly dependent; in this case, separability of the
candidate sets carries the full burden of identifiability. For families with identical functional form
across components (e.g., exponential or homogeneous Weibull), identifiability requires that the
candidate-set matrix C' € {0, 1}/S1*™ —whose rows are the indicator vectors of the candidate sets
in S—has full column rank m. This is strictly stronger than separability (which requires only that
no two columns of C' are identical) but is guaranteed when S includes a singleton {j} for each
component j.

Remediation of non-identifiability. When components j and j’ are diagnostically confounded,
three strategies are available:

1. Collapse into a super-component. Replace the always-grouped components with a single
composite component whose hazard is h;+h;,. This reduces the parameter count and restores
identifiability at the cost of losing individual component resolution.

2. Impose equality constraints. Assume the grouped components share identical parameter
values (6; = 0j), splitting the combined hazard equally. This is appropriate when the com-
ponents are physically interchangeable (e.g., identical capacitors on the same circuit board).

3. Bayesian regularization. Place informative priors on 6; and 6, to obtain a proper pos-
terior even when the likelihood surface is flat. The posterior concentrates as additional
diagnostic information becomes available, so the prior penalty vanishes asymptotically.

In each case, the practitioner should examine the candidate-set structure of the data before fitting
the model. Convergence difficulties in numerical optimization (e.g., failure to converge within a
maximum number of iterations) may signal that the separability condition of Definition 1 is violated
or nearly violated.

6 Maximum Likelihood Estimation

Maximum likelihood estimation (MLE) finds the parameter values that maximize the likelihood of
the observed data [Bain and Engelhardt, 1992, Casella and Berger, 2002]. A maximum likelihood
estimate 6 satisfies

L(0) = max L(6). (28)

For computational efficiency, we work with the log-likelihood.
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Theorem 11 (Log-likelihood). Under Conditions 1-3, the log-likelihood for the masked data model
18

U(0) = lp(0) + (r(0) + (1(0) + (1(0), (29)
where
£00) = Y- Y- tow 0:03) + 1080, )| (30)
€€ “j=1 J€EC;
> log R;(7i;6;), (31)
1€R j=1
Zlog[/ > hy(t; 6;) H (t; 6)) dt] (32)
€L JEC; =1
Zlog[/ > hi(t:6;) H (t;6)) dt} (33)
ieT b jec =1
Proof. Taking logarithms in Theorem 9 and using log [[ = > log gives the result directly. O

Remark 6 (Common special case). When only exact failures and right-censored observations are
present (£ =Z = (), the log-likelihood reduces to £(0) = ¢r(0) + ¢r(0) (Equations (30) and (31)).
This is the form used in most companion papers.

6.1 Score Equations
The MLE is found by solving the score equations

)
90,

06) =0, (34)

for each parameter 6;,. (the rth element of the jth component’s parameter vector). In general, these
equations do not admit closed-form solutions and must be solved numerically using methods such
as Newton—Raphson or quasi-Newton algorithms [Nocedal and Wright, 2006, Byrd et al., 1995].

6.2 Asymptotic Properties

Under standard regularity conditions (which must be verified for each specific distribution family)—
including identifiability, smoothness of the log-likelihood, and the true parameter lying in the in-
terior of the parameter space—the MLE is consistent, asymptotically normal, and asymptotlcally
efficient [Casella and Berger, 2002, Lehmann and Casella, 1998]. That is, as n — oo, 8 & 6y
(the true parameter) and /n(8 — o) 4 N(0,Z71(8y)), where Z(6y) is the per-observation Fisher
information matrix. For finite samples, these asymptotic approximations may be inaccurate, and
bootstrap methods (e.g., the bias-corrected and accelerated method [Efron, 1987, Efron and Tib-
shirani, 1994]) provide a nonparametric alternative for constructing confidence intervals.

6.3 General Recipe for Practitioners

Given a hazard function h;(t;0;,x;) for each component, the practitioner applies the framework
as follows:
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1. Specify the component hazard functions h;(t;0;, ;) and compute R; = exp(— fg h; du)
(analytically if possible, numerically otherwise).

2. Substitute the component-specific R; and h; into the log-likelihood (Equation (29)).
3. Differentiate the log-likelihood with respect to each parameter to obtain the score equations.

4. Solve the score equations numerically (e.g., using L-BFGS-B [Byrd et al., 1995] or Newton—
Raphson) to obtain 6.

5. Construct confidence intervals using the observed Fisher information or bootstrap re-
sampling.

Section 7 provides hazard functions for five common parametric families, enabling immediate
application of this recipe.

6.4 Worked Example: Exponential Components

We illustrate the recipe using the data in Table 3 (m = 3 components, n = 6 observations) with
Exponential component lifetimes. For Exponential components, R;(t; A;) = e~ and hj(t; \;) =
Aj, where A\; > 0 is the failure rate of the jth component.

Since the data contain only exact failures and right-censored observations, the log-likelihood is
¢ ={lp + (r (Remark 6). For Exponential components, log R;(t; \j) = —A;t and h;(t; \j) = Aj, so

the two contributions are:
€E:Z[—(/\1+)\2+)\3)ti+log(z /\j>:|, (35)
ic& JjE€C;

ER:Z[—(/\l—F)\Q—I—)\g)TZ']. (36)
1€ER
Substituting the data from Table 3 (with Tiota1 = Y ;- $; = 18.7), the combined log-likelihood is
0= —18.7T(A\1 + A2 + A3) + log(A1 + A2) + log(A2) + log(Aa + A3) + log(A1 + A3). (37)
The score equations 0¢/0\; = 0 are

or 1 1

— = —18.7+ + =0, 38
O A1+ Ao AL+ A3 ( )
or 1 1 1

—— =187+ +—+ =0, 39
OAa A+ A A+ A3 (39)
ot 1 1

— = —18.7+ + =0. 40
OA3 Ao+ A3 A+ A3 (40)

Subtracting (40) from (38) gives 1/(A1 4+ X2) = 1/(Xa + A3), s0 Al = A3. Setting @ = A; = A3 and
B = Ao, the system reduces to two equations whose solution is

— V1 < 1441
T=VIT 0.0385, g = 1+vi7
74.8 37.4

The total system failure rate is 5\1 + 5\2 + 5\3 = 4/18.7 ~ 0.2139, which equals the number of
observed failures divided by the total exposure time—a general property of the Exponential MLE.
The masking affects only the allocation of hazard across components, not the total.

Component 2 has the highest estimated failure rate, consistent with its appearance in three of
the four failure candidate sets (including a singleton). Components 1 and 3 have equal rates by
symmetry: each appears in exactly two candidate sets, with identical structure after relabeling.

A=Az = ~ 0.1370. (41)
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7 Common Hazard Function Specifications

Table 4 lists hazard functions for five standard parametric families, illustrating how the general
framework specializes. Any hazard function h;(t; ;) satisfying the regularity conditions of Sec-
tion 6.2 can be used; the named families below are common starting points.

Table 4: Common hazard function specifications. The hazard function h; is the primary specifica-
tion; the reliability function R; and density f; are derived via Equations (4)—(5).

Family h;i(t;0;) R;(t;05) fi(t;05) Parameters
Exponential Aj e Nt e rit A; >0
Weibull Li] (i)k]’*1 e~ (/A" Ky (i)k'jfle*“/mk" kj, Aj >0
Aj A AN
. LN o xS
Pareto % (xm%) ! ;ajn;lfd Qj, Tmin,j > 05 t > Tmin,j
logt—p 5
H—5— — .
Log-normal ( ! )7 - 1-— @(M) 1 d)(m) i €R, 05 >0
o[l — @ (1B o; ojt o;
J (e
i(t;05) ¥(ay, Bjt) B;’ 1 g,
Gamma' IGLZ 1— P2 T a;,B; >0
R;(t;0;) () I'(e) o

In Table 4, ®(-) and ¢(-) denote the standard normal CDF and pdf, respectively; ~(-,-) is
the lower incomplete gamma function; and I'(:) is the gamma function. For distributions with
parameter-dependent support (e.g., the Pareto distribution with ¢t > 2yp j), the system support is
t > max; Tmin,j, and the product formula for system reliability (Theorem 1) must be applied only
on this common support.

Remark 7 (Covariate-dependent hazards). The hazard function h;(t;0;, ;) may incorporate
observation-level covariates x;. A common special case is the proportional hazards specification
hj(t;0;,x;) = hoj(t;0;) exp(wl—-rﬁj), where hyg ; is a baseline hazard from any family in Table 4 and
B, is a component-specific regression coefficient vector. The likelihood expressions of Section 5
remain valid; only the functional form of h; changes.

Remark 8 (Nested models within a family). Several families in Table 4 admit natural hierarchies
of nested sub-models. For instance, the Weibull family contains a common-shape reduction (m + 1
parameters) in which the system lifetime is itself Weibull, and a further exponential specialization
(m parameters) with fully analytical inference. These nestings enable formal model selection via
likelihood ratio tests, AIC, or BIC. A detailed treatment—including simulation studies quantifying
when a reduced model is appropriate—is given in Towell [2025e].

8 Discussion

8.1 What the Framework Enables

The hazard-function-based likelihood framework developed in this paper provides a foundation for
a family of distribution-specific companion papers. Each companion paper can focus on a specific
parametric family—for example, Weibull [Towell, 2025f] or Exponential [Towell, 2025d]—deriving
closed-form score equations and Fisher information matrices, conducting simulation studies to assess

!The Gamma hazard function has no elementary closed form; it is expressed here via its definition h; = f;/R;.
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MLE performance under varying masking and censoring scenarios, and developing specialized soft-
ware packages, all while citing the present work for the general theory. The layered software stack
described in Section 8.4—from component specification (dfr.dist) through series composition
(dfr.dist.series) to masked-data likelihood (dfr.lik.series.md)—demonstrates this modular-
ity: new component distributions inherit the full estimation pipeline without distribution-specific
likelihood code.

8.2 Relaxation of Conditions

The three conditions (C1-C2-C3) provide a clean mathematical framework, but practitioners may
encounter situations where one or more conditions are violated. We briefly sketch what happens
in each case:

e Relaxing C1 (candidate set may not contain the true cause): The summation in the likeli-
hood cannot be restricted to ¢;; the full component set must be considered, along with a model
for the probability that the true cause is excluded from the candidate set. This introduces
additional nuisance parameters.

¢ Relaxing C2 (asymmetric masking): The masking probabilities Pr{C; = ¢; | T; = t;, K; = j}
remain inside the summation and couple with the component hazards. The MLE depends on
the relative masking probabilities, which must be estimated or modeled.

e Relaxing C3 (masking depends on 6): The factor 8; cannot be dropped from the likelihood,
and the MLE must account for the dependence of the masking mechanism on the lifetime
parameters. This leads to a more complex joint estimation problem.

Detailed treatment of these relaxations is beyond the scope of this paper and is deferred to
future work.

8.3 Computational Considerations

Several practical issues arise when applying the framework:

e Local optima. The log-likelihood surface may be multimodal, particularly under heavy
masking or censoring. Multiple random starting points for the numerical optimizer are rec-
ommended.

e Convergence. Failure to converge within a reasonable number of iterations may indicate
identifiability issues for the given data set. Such cases should be flagged rather than silently
discarded.

e Boundary constraints. Many lifetime distributions have positivity constraints on param-
eters. Constrained optimization methods such as L-BFGS-B [Byrd et al., 1995] or reparam-
eterization (e.g., optimizing over log-scale parameters) can enforce these constraints.

8.4 Software Ecosystem

The framework developed in this paper is implemented as a layered software stack in the R sta-
tistical computing environment [Towell, 2025a,b,c]. At the base, the dfr.dist package [Towell,
2025a] provides a hazard-function-first abstraction for individual component lifetime distributions:
each distribution is specified by its hazard function, from which the cumulative hazard, reliability,
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density, and random sampling follow (cf. Equations (3)—(5)). The dfr.dist.series package [Tow-
ell, 2025b] composes components into series system distributions using hazard additivity (Theo-
rem 3), with a parameter layout that maps the global vector € to component-specific subvectors 6;.
The dfr.1lik.series.md package [Towell, 2025c] implements the C1-C2-C3 log-likelihood (Theo-
rem 11) for all four observation types (exact, right-censored, left-censored, and interval-censored),
taking arbitrary component hazard closures as input. Together these packages enable practitioners
to apply the recipe of Section 6.3 with any component distribution in the dfr.dist ecosystem,
without writing distribution-specific likelihood code.

For Weibull component lifetimes specifically, the wei.series.md.c1.c2.c3 package [Towell,
2023c| provides closed-form score vectors and Fisher information, along with bootstrap confidence
interval construction [Towell, 2023a].

9 Conclusion

We have developed a general likelihood framework, expressed in terms of component hazard func-
tions, for estimating component reliability from masked series system data. The framework rests
on three conditions (C1-C2-C3) that capture natural properties of diagnostic procedures and allow
the unknown masking distribution to be eliminated from the likelihood.

The key results are:

e The joint distribution of the system lifetime, component cause of failure, and candidate set
(Section 5.1);

The derivation showing how each condition progressively simplifies the likelihood (Sections 5.2
through 5.4);

The combined likelihood contribution under C1-C2-C3 (Theorem 9);

The general log-likelihood and a recipe for applying the framework to any parametric hazard
specification (Section 6);

Hazard function specifications for five common families (Table 4).

This framework provides a rigorous foundation for distribution-specific companion papers that
can focus on deriving score equations, conducting simulation studies, and developing specialized
inference tools for particular lifetime distribution families.
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