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Abstract

Encrypted search systems enable privacy-preserving queries over confidential data stored on
untrusted servers. However, the confidentiality of such systems may be compromised through
frequency analysis attacks. We develop a probabilistic framework for quantifying the confi-
dentiality of encrypted search systems based on the sampling distribution of a confidentiality
statistic. Using the Bootstrap method with normal approximation, we efficiently estimate the
risk of confidentiality breach, enabling proactive countermeasures. Our analysis shows how en-
tropy of the query distribution relates to the adversary’s expected accuracy, providing theoretical
grounding for resilience engineering approaches to encrypted search security.

1 Introduction

With the advent of cloud computing, it is tempting to store our confidential data on remote (un-
trusted) systems like a cloud storage provider. However, a system administrator may be able to
compromise the confidentiality of our data which threatens to prevent further adoption of cloud
computing and electronic information retrieval in general if the threat cannot be mitigatedSubashini
and Kavitha [2011], Zissis and Lekkas [2012], Claycomb and Nicoll [2012].

The primary challenge is a trade-off problem between confidentiality and usability of the data
stored on remote untrusted systems. Encrypted Search attempts to resolve this trade-off problem.

Definition 1.1. Encrypted Search allows authorized search agents to investigate presence of specific
search terms in a confidential target data set, such as a database of encrypted documentsBoneh
et al. [2004], Jin Li et al. [2010], Cao et al. [2014], Sun et al. [2013], Kamara and Lauter [2010],
while the contents, especially the meaning of the target data set and search terms, are hidden from
any unauthorized personnel, including the system administrators of a cloud server.

Essentially, Encrypted Search enables oblivous search. For instance, a user may search a confi-
dential database stored on an untrusted remote system without other parties being able to determine
what the user searched for. We denote any untrusted party that has full access to the untrusted
remote system (where the confidential data is stored) as an adversary.1

Despite the potential of Encrypted Search, perfect confidentiality is not theoretically possible.
There are many ways confidentiality may be compromised. In this paper, we consider an adversary
whose primary objective is to comprehend the confidential information needs of the search agents
by analyzing their history of Encrypted Search queries.

A simple measure of confidentiality is given by the proportion of queries the adversary is able
to comprehend. We consider an adversary that employs a known-plaintext attack. However, since

1A system administrator being a typical example.
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the confidentiality is a function of the history of queries, different histories will result in different
levels of confidentiality. We apply the Bootstrap method to estimate the sampling distribution
of the confidentiality. The sampling distribution provides the probabilistic framework to resolve
security-related questions such as “what is the probability that the confidentiality is less than 70%?”

The rest of this paper is organized as follows. Section 2 reviews existing work in Encrypted
Search. There has not been much work that quantitatively analyzes the conditions for information
leaks by frequency attacks, such as the number of encrypted words an adversary needs to observe
for a certain accuracy and how likely it happens. Section 5 introduces the moving average bootstrap
(MAB) method, an efficient estimator of the achievable accuracy by the adversary using frequency
attacks. Section 7 presents our performance evaluations on the MAB method. Section 9 summarizes
our contributions and planned future work, followed by the selected references.

2 Related work

Boneh proposed a method to enable untrusted systems the ability to perform searches over en-
crypted e-mail messages, called public-key encryption with keyword search (PEKS) Boneh et al.
[2004]. Boneh designed PEKS in such a way that e-mail messages are encrypted by the public
key of an e-mail receiver, while a third party, such as an e-mail server, to perform search for a
particular word (e.g., “urgent”) in each encrypted message without all the raw contents in the
encrypted e-mail exposed to the third party. The core of this method is trapdoors, which are a
hash value of a given word in e-mails. Each e-mail receiver creates trapdoors, one for each target
word and trapdoors are included in each encrypted e-mail message for searches on the encrypted
e-mail messages.

Li extended this concept to allow untrusted systems to perform encrypted searches that allow
approximate matching by enumerating multiple trapdoors, one for each expected deviationJin Li
et al. [2010], Cao et al. [2014], Sun et al. [2013], Kamara and Lauter [2010] proposed to apply
encrypted search to enhancing security in cloud computing.

Despite the potentials in the encrypted search schemes, risk of information leaks through guess-
ing the searched words has been identifiedByun et al. [2006], Yau et al. [2008], Jeong et al. [2009].
It has been demonstratedByun et al. [2006], Yau et al. [2008], Jeong et al. [2009] that anyone who
has access to encrypted data possibly map them to their plain text counterparts.

Use of secure communication channels (e.g., SSL) will be effective in hiding the trapdoors in
queries submitted by legitimate users from external adversaries, but use of secure communication
channels still can not prevent frequency attacks from internal adversaries, such as malicious admin-
istrators, assuming that they can intercept trapdoors within a local host computer, by installing
illegal capturing tool or by tampering executables.

Despite the threat from frequency attacks, there has not been much work that delves into
quantified analyses on the conditions for when such information leaks exceed a tolerable risk level
under various conditions. Rivain proposed a multivariate Gaussian random variable method to
estimate the success rate in discovering secret keys under side-channel attacksRivain [2009]. Rivain
proposed use of “confidence” for evaluating the effectiveness in side-channel attacksThillard et al.
[2013]. Rivain and Thillard both proposed a solution against correlation attacks, but not against
frequency attacks. Correlation attacks are different from frequency attacks in that the adversary
discovers the encryption keys to deduce the plaintext in the former, while the latter induces the
plaintext directly from the observed trapdoors without discovering their encryption keys.
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3 Encrypted Search model

An information retrieval process begins when a search agent submits a query to an information
system, where a query represents an information need. In response, the information system returns
a set of relevant objects, such as documents, that satisfy the information need.

An Encrypted Search system may support many different kinds of queries, but we make the
following simplifying assumption.

Assumption 3.1. The query model is a sequence-of-words.

The adversary is given by the following definition.

Definition 3.2. The adversary is an untrusted agent that is able to observe the sequence of
queries and corresponding search results submitted by authorized search agent. The objective
of the Encrypted Search system is to prevent the adversary from being able to comprehend the
meaning of the queries or the underlying plaintext data.

A query submitted to an Encrypted Search system should not be comprehensible to the adver-
sary.

Definition 3.3. A hidden query represents a confidential information need of an authorized search
agent that is suppose to be incomprehensible to the adversary.

The primary means by which Encrypted Search is enabled is by the use of cryptographic trap-
doors as given by the following definition.

Definition 3.4 (Trapdoor). Search agents map plaintext search keys to some cryptographic hash,
denoted trapdoors.

A trapdoor for a plaintext search key is necessary to allow an untrusted Encrypted Search system
to look for the key in a corresponding confidential data set.

Assumption 3.5. The Encrypted Search system uses a substitution cipher in which each search
key in a plaintext query is mapped to a unique trapdoor signature. The substitution cipher is
denoted by

h: X 7→ Y , (1)

where X is the set of plaintext search keys and Y is the set of trapdoors.

The most straightforward substitution cipher is a simple substitution cipher where each atomic
plaintext search key maps to a single trapdoor as illustrated by Algorithm 1.

Algorithm 1: Simple substitution cipher

Input: x⃗ is a plaintext query.
Output: y⃗ is the corresponding hidden query.

1 function HiddenQueryGenerator(x⃗)
2 y⃗ ← {h(x) : x ∈ x⃗};
3 return y⃗;

Given a plaintext key x ∈ X, h(x) is a random variable whose support is a subset of the
trapdoors in Y. Given any plaintext keys x, x′ ∈ X, x ̸= x′, the supports of h(x) and h(x′) are
disjoint. This makes it possible to undo the substitution cipher by some function denoted by

g∗ : Y 7→ X (2)
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such that
x = g∗(h(x))

for every x ∈ X. Thus, given a trapdoor y ∈ Y, the corresponding plaintext key is given uniquely by
g∗(y) ∈ X. If h is a simple substitution cipher where each plaintext key maps to a single trapdoor,
then h is a function and g∗ is its inverse denoted by h−1.

Definition 3.6. A hidden query time series of size p is a sequence of p hidden queries given by

(y⃗1, . . . , y⃗p) , (3)

where y⃗j is given by
y⃗j = HiddenQueryGenerator(x⃗j) (4)

for j = 1, . . . , p and x⃗1, . . . , x⃗p is a time series of n plaintext queries submitted by authorized search
agents.

Assumption 3.7. The adversary may only observe the hidden query time series to estimate the
plaintext query time series.

We denote the p components of the j-thtrapdoor y⃗j by

yj1, . . . , yjjp ,

and thus given a hidden query time series

(y⃗1, y⃗2, . . . , y⃗p) , (5)

we may represent it by the time series given by(
y1 1, . . . , y1 j1 , q, y2 1, . . . , y2 j2 , q, . . . , yp 1, . . . , yp jp , q

)
, (6)

where q denotes the end-of-vector token.
We denote a time series of such trapdoors by the following definition.

Definition 3.8. A time series of n trapdoors is denoted by

τ⃗n = (y1, . . . , yn) , (7)

where
yj = h(xj) (8)

for j = 1, . . . , n and (x1, . . . , xn) is the corresponding plaintext time series.

3.1 Probabilistic model

The two primary sources of information are given by the (unobserved) time series of plaintext
which induces the (observable) time series of trapdoors. Other potential sources of information are
ignored, such as the time a hidden query is submitted.2

Since the time series of plaintext is uncertain, we model it as a sequence of random variables.

2The time series τn is just a logical time with the only constraint being that yj was submitted before or at the
same time as yj+1, . . . , yn.
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Definition 3.9. The j-thrandom plaintext search key, denoted by Xj, in a time series of size n has
a conditional probability given by

Pr[Xj = xj | X1 = x1, . . . ,Xj−1 = xj−1] (9)

for j = 1, . . . , n and one of the keys is special and denotes end-of-query.

The time series of trapdoors is a function of the plaintext time series.

Definition 3.10. The uncertain j-thtrapdoor is a random variable given by

Yj = h(Xj) , (10)

where the end-of-query key is not remapped by the substitution cipher h.

4 Threat model: known-plaintext attack

In this threat model, the adversary is interested in estimating the plaintext time series. However,
the adversary is only able to observe the trapdoor time series. Thus, the adversary’s objective is
to infer the plaintext from the trapdoors using frequency analysis attacks,3 in particular a known-
plaintext attack.

In a known-plaintext attack, the adversary the objective of the adversary is to learn how to
undo the substitution cipher h as given by g∗.

Assumption 4.1. The mapping function g∗ is not known to the adversary.

Assumption 4.2. The adversary is able to observe a time series of n trapdoors, i.e., a particular
τn.

A maximum likelihood estimator of g∗ is given by

ĝ = argmax
g∈G

{
Pr[X1 = g(y1)]×

n∏
i=2

Pr[Xi = g(yi) | Xi−1 = g(yi−1), . . . ,X1 = g(y1)]

}
,

(11)

where G is the set of all possible mapping functions from the set of trapdoors Y to the set of
plaintext keys X.

If two plaintext keys x, x′ ∈ X, x ̸= x′, may be exchanged without changing the probability
distribution of the time series, they are indistinguishable and the mapping function g∗ necessarily
has multiple maximum likelihood estimates (even after observing an infinite time series).4 However,
if some of the random variables are not exchangeable, then the adversary may learn something about
the plaintext by observing the time series of trapdoors.

The greater the uniformity of the true distribution, the less accurate the maximum likelihood
estimator of g∗ is. At the limit of maximum uniformity, where every pair is exchangeable, the
adversary can learn nothing about the plaintext by observing the time series. Natural languages
have a high degree of non-uniformity and so the primary concern of the adversary is the divergence
between the true distribution and the known-plaintext distribution.

3Also known as spectral analysis attacksRaymond [2001].
4The maximum likelihood estimator of the mapping function is not consistent.
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Assumption 4.3. The optimal adversary knows the true plaintext distribution X1, . . . ,Xn (or a
known-plaintext distribution that has a sufficiently small divergence from the true distribution).

The known-plaintext distribution may be used to solve an approximation to Eq. (11) as given
by the following definition.

Definition 4.4. In a known-plaintext attack, the adversary substitutes the unknown true distribu-
tion with the known-plaintext distribution and solves Eq. (11) under this substituted distribution.

Sub-optimal adversaries A suboptimal adversary may have any of the following problems:

1. The distribution of the known-plaintext diverges from the true distribution to the extent
that the maximum likelihood estimator is inconsistent. All things else being equal, the less
divergence between the true distribution and the known-plaintext distribution, the better the
estimator.

2. The space of mapping functions G may be too large or complex. Note that for a simple
substitution cipher, the space of mapping functions G has k! possible mapping functions,
where k is the cardinality of the set of plaintext keys X, but a solution to the maximum
likelihood estimator may be found in logarithmic time.5

3. A simplified probabilistic language model is employed to simplify the problem of finding the
maximum likelihood estimate, and thus some of the information in the time series is discarded.

According to Piantadosi, the marginal distribution of words in most documents (and queries)
follow a Zipf distributionPiantadosi [2014], where the most frequent word occurs approximately
proportional to k times as often as the k-thmost frequently occurring word.

If an adversary ignores correlations in the time series by modeling each time step as an in-
dependent and identically distributed random variable, then Eq. (11) simplifies to the trivially
solvable

ĝ = argmax
g∈G

{
n∏

i=1

Pr[X = g(yi)]

}
(12)

= argmax
g∈G

{
n∑

i=1

log Pr[X = g(yi)]

}
(13)

where

Pr[X = x] =
1

n

n∑
i=1

Pr[Xi = x] .

. If the true distribution is an independent and identically distributed time series, the adversary
is optimal if a solution to Eq. (12) can be found.

5 Confidentiality statistic

We are interested in measuring the degree of confidentiality as given by the following definition.

5In this case, the desired mapping function ĝ maps the j-thmost frequently occurring trapdoor in the trapdoor
time series to the j-thmost probable plaintext key under the true distribution.
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Definition 5.1 (Confidentiality statistic). Given a time series of n trapdoors

τ⃗n = (y1, y2 . . . , yt, . . . , yn) , (14)

the confidentiality at time step t, 1 ≤ t ≤ n, is given by

Ct = 1− pt (15)

where pt is the fraction of trapdoors in the first t time steps that the adversary successfully maps
to plaintext. That is,

pt =
δ

t
, (16)

where

δ =
t∑

i=1

[g∗(yi) = ĝ(yi)] . (17)

The following example illustrates the confidentiality statistic.

Example 5.2. Suppose the adversary is able to correctly map the set of trapdoors given by

{a, b, c} (18)

to plaintext in a time series of 8 trapdoors given by

τ⃗8 = (a, c, d, b, e, d, b, d) . (19)

The adversary correctly maps δ = 3 of the first t = 4 trapdoors in the time series. Thus, the
confidentiality at time step 4 is given by

C4 = 1− 3

4
= 0.25 . (20)

The adversary correctly maps δ = 4 trapdoors in the total time series. Thus, the confidentiality
at time step 8 is given by

C8 = 1− 4

8
= 0.5 . (21)

According to this statistical measure, the confidentiality increased from time step 4 and 8, i.e., the
adversary comprehends a smaller fraction of the time series at the later time step.

The confidentiality statistic is expected to converge to some asymptotic limit, i.e., as t → ∞,
the confidentiality Ct → c, 0 ≤ c ≤ 1. If the adversary employs a known-plaintext attack where
the distribution of the known-plaintext is equivalent to the true distribution, then c = 0, i.e., the
adversary eventually comprehends the entire time series.

5.1 Sampling distribution of confidentiality statistic

The confidentiality statistic is a function of a random time series (Y1, . . . ,Yn). Thus, it has a
sampling distribution.

Definition 5.3. The sampling distribution of Ct is denoted by Ct for t = 1, . . . , n for a random
time series of n trapdoors.
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The sampling distribution quantifies everything there is to know about the statistic. For in-
stance, the sampling distribution may be used to make claims like “there is a 1% chance the
adversary comprehends 70% of the time series at time step t.”

Generally, the sampling distribution is not known and thus must be estimated. If we estimate
the generative model of the time series of trapdoors, we may use the Bootstrap methodKusharya
[2012] to estimate the sampling distributions.

Several generative models may be used to produce synthetic time series for Bootstrap resam-
pling:

1. Marginal (unigram) model : Each trapdoor is drawn independently from the marginal distri-
bution Pr[Y = y]. This model is computationally simple but ignores sequential dependencies.

2. Bigram model : The probability of a trapdoor depends on the immediately preceding trapdoor,
i.e., Pr[Yj = y | Yj−1 = y′]. This captures first-order sequential patterns in query behavior.

3. Higher-order Markov models: The trapdoor distribution depends on a window of the last q
trapdoors. These models capture longer-range dependencies at the cost of increased parameter
estimation.

4. Interpolation techniques: For smaller sample sizes, smoothing methods interpolate between
lower-order and higher-order models to mitigate data sparsity, e.g., Katz backoff or Kneser-
Ney smoothing.

The choice of generative model affects the fidelity of the Bootstrap estimate. More sophisticated
models better capture the true dynamics of query sequences but require more data for reliable
parameter estimation.

In the Bootstrap method, we “resample” from the time series and compute the confidentiality
Ct of the resample. If we do this m times, we generate a sample of m confidentiality statistics

C
(1)
t , . . . , C

(m)
t (22)

for t = 1, . . . , n.
Given this sample, we may compute any statistic that is a function of the sample. For instance,

the expected value of the confidentiality statistic at time step t, E[Ct], may be estimated by the
sample mean

C̄t =
1

t

m∑
i=1

C
(i)
t . (23)

Another estimator of the expected confidentiality is given by a moving average like Exponential
smoothing. However, the Bootstrap sampling distribution makes it possible to compute many
other statistics of interest.

The variance of the confidentiality statistic at time step t, Var[Ct], is another parameter of
potential interest6 and may be estimated by the sample variance

s2m−1 =
1

m− 1

m∑
i=1

(
C

(i)
t − C̄t

)2
. (24)

If the variance is high at a time step t, the expected confidentiality at time step t is not very
indicative of the confidentiality of any particular time series at time step t.

By the large sample approximation, the sampling distribution of Ct for t = 1, . . . , n is approxi-
mately normal as given by the following theorem.

6The fluctuations demonstrated by Fig. 1 indicate high variance.
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Theorem 5.4. The sampling distribution of Ct converges in distribution to the normal distribution
with a mean C̄t and a variance s2m−1, denoted by

Ct
d−→ N

(
C̄t, s

2
m−1

)
. (25)

Proof. The confidentiality statistic given by Eq. (15) is a linear function of an average. Therefore,
by the Central Limit Theorem, the sampling distribution of Ct converges in distribution to a normal
distribution with a mean given by the sample mean and a variance given by the sample variance.

6 Mapping entropy to confidentiality

The adversary described in Section 4 may efficiently compromise the confidentiality of a time series
of trapdoors if a simple substitution cipher is employed as described in Section 3. However, the
described adversary is not particularly sophisticated. For instance, a more sophisticated adversary
incorporates the search patterns of specific search agents into the probability model described in
Section 3.1.

The adversaries we worry about the most are probably more clever than us. Thus, it may
be asking too much to simulate them so that a reliable confidentiality statistic can be produced.
Matters are further complicated if a simple substitution cipher is not used, e.g., a homophonic
encryption scheme is used to flatten the distribution of trapdoors. In this case, the confidentiality
is expected to improve, but it may be difficult to quantify to what extent.

We may be able to construct a lower-bound on confidentiality that is a function of the entropy.
The entropy of a random time series of t trapdoors is given by

H(Y1, . . . ,Yt) bits . (26)

If the random time series is independently distributed, the entropy simplifies to H(Y1)+· · ·+H(Yt)
and if it is also identically distributed is simplifies to tH(Y1). Consider the following cases:

1. An optimal adversary is expected learn nothing about the mapping from trapdoors to plaintext
keys by observing a uniformly distributed time series.7 A uniformly distributed time series
of over a support set of m unique trapdoor signatures has log2m bits/trapdoor of entropy.

2. An optimal adversary is expected to learn everything about the mapping from trapdoors to
plaintext keys by observing a degenerate time series, which has zero entropy.

By Items 1 and 2, the entropy is bounded by

0 ≤ H(Y1, . . . ,Yt) ≤ t log2m. (27)

We use these insights to construct an information again measure given by the following defini-
tion.

Definition 6.1. The mean information gain of a random time series Y1, . . . ,Yt is defined to be
the difference between the maximum entropy and the actual entropy as given by

µ(t) = t log2m−H(Y1, . . . ,Yt) , (28)

which is a real number between 0 and t log2m.

7The optimal adversary randomly chooses a mapping.
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If the random time series is independently and identically distributed, then the mean informa-
tion gain is given by

µ(t) = t (log2m−H(Y1)) bits . (29)

The rate of change of the mean information gain is given by the following theorem.

Theorem 6.2. The rate of change of the mean information gain at time t is given by

λ(t) = log2m−H(Yt | Yt−1, . . . ,Y1) bits/trapdoor , (30)

which is a real number between 0 and log2m.

Proof. The rate of change at time t is the difference between the mean information gain at time
steps t and t− 1, which is given by

λ(t) = µ(t)− µ(t− 1) (31)

= log2m−H(Yt, . . . ,Y1) + H (Yt−1, . . . ,Y1) . (32)

The joint entropy H(Y1, . . . ,Yt) may be rewriten as

H(Yt | Yt−1, · · · ,Y1) + H(Yt−1, · · · ,Y1) . (33)

Performing this substitution results in the equivalent equality given by

λ(t) = log2m−H(Yt | Yt−1, . . . ,Y1)

+ H (Yt−1, . . . ,Y1)−H(Yt−1, . . . ,Y1)
(34)

= log2m−H(Yt | Yt−1, . . . ,Y1) . (35)

If the random time series is independently and identically distributed, then the rate of change
is a constant given by

λ = log2m−H(Y1) bits/trapdoor . (36)

We may rewrite µ(t) in terms of the rate of the mean information gain as given by

µ(t) =

t∑
j=1

λ(j) . (37)

For the uniformly distributed time series and the degenerate time series, λ(t) = 0 and λ(t) = log2m
respectively for all time steps t.

We make the following conjecture about the mean information gain.

Conjecture 6.3. The mean information gain µ(t) quantifies the amount of information the optimal
adversary is able to extract from observing Y1, . . . ,Yt for the purpose of mapping trapdoors to
plaintext keys.

An upper-bound on the expected accuracy of the optimal adversary at time t is an unknown
function

r : {1, 2, . . .} 7→ (0, 1] (38)

that is a function of µ(t) and has the following constraints:
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1. 0 < r(t) ≤ 1 for t ≥ 1. The accuracy is between 0 and 1. However, r(t) is an expectation,
and the optimal adversary has a chance at correctly mapping trapdoors to plaintext even if
the random time series has the maximum entropy, thus it is always greater than 0.

2. r(t+ 1) ≥ r(t). It is a monotonically increasing function since seeing more of the time series
is not expected to decrease the optimal adversary’s accuracy.8

3. If λ(t) = 0, then r(t + 1) − r(t) = 0. If no information is gained from observing a time step
t, then the optimal adversary is not expected to improve accuracy at time t.

4. limt→∞ r(t) = c, 0 < c ≤ 1. This is entailed by the other constraints. If the adversary knows
the true distribution, where the distribution is not uniformly distributed, and the maximum
likelihood equation has a unique solution, then c = 1.

Plausible candidates of r take on sigmoid -like curves. Initially, r is near its lower-limit (typically
near 0) and as t increases, r begins to slowly increase. Given an appropriate mapping from trapdoors
to plaintext, the empirical distribution of the mapped trapdoors starts to resemble the unknown
true distribution. At some point, the empirical distribution has nearly zero divergence from the
true distribution, and thus the adversary achieves maximum accuracy.

6.1 Estimating entropy

Since the probabilistic model for the random time series may not be known, we may estimate the
entropy.

Postulate 6.4 (Optimal compressor). The entropy of a random time series is equivalent to the
expected bit length output by an optimal lossless compressor given the time series as input as given
by

H (Y1, . . . ,Yt) = E

[
BL

(
Compress∗

(
Y1Y2 · · ·Yt)

))]
, (39)

where Compress∗ is a lossless optimal compressor of the sequence and BL(x) is the bit length of x.

Thus, we may estimate the entropy as given by the following definition.

Definition 6.5. Given a time series of t trapdoors,

τt = (y1, . . . , yt) , (40)

an estimator of the entropy is given by

Ĥ = BL (Compress(y1y2 · · · yt)) , (41)

where Compress is a near-optimal compressor of the time series.

The entropy is an expectation, and is therefore a constant. However, an optimal compressor as
a function of Y1, . . . ,Y2 outputs a bit string with a random bit length whose expectation is given
by the entropy. Thus, it has a sampling distribution.

8Unless more severe countermeasures to throw off the adversary are employed at time t+ 1 than during previous
time steps. However, we assume that time t+1 is not a special point in time, and that later time steps do not employ
more aggressive counter-measures than earlier time steps.
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For the purpose of matching the trapdoors to plaintext, assuming we have the true distribution,
the most accurate mapping occurs when the empirical distribution of τt has zero divergence from
the true distribution. The empirical distribution converges in distribution to the true distribution,
so as t→∞, pt → 1.

The adversary given by Eq. (12) is optimal if the time series τt is drawn from a unigram language
model using a simple substitution cipher.

One possibility is to do a curve fit of r to the mean confidentiality with respect to time step t.
Alternatively, we may use the relationship between r(t) and the information gain µ(t) to establish
a mapping. Since r(t) maps time to accuracy through µ(t), we proceed as follows: first, compute
µ(t) for the observed time series; second, measure the empirical confidentiality at the corresponding
information level; third, map this confidentiality to the expected accuracy r(t). If this mapping is
consistent across different time series and system configurations, it provides a principled way to
estimate accuracy bounds from entropy measurements alone.

7 Case study: Zipf distribution

Consider a random time series X1, . . . ,Xn. If Xi for i = 1, . . . , n follow a Zipf distribution, then
its rank is a random variable given by

K = Rank (Xi) (42)

such that
K ∼ Zipf(s,N) , (43)

where N is the number of unique plaintext words and s characterizes the degree of uniformity of
the Zipf distribution.

Definition 7.1. The probability mass function of K is given by

pK(k | s,N) = k−sH−1
N,s . (44)

where HN,s is the generalized harmonic number given by

Hn,s =
n∑

k=1

k−s . (45)

By Eq. (42), the probability mass function of Xi is given by

pX1(x) = pK
(
Rank(x) | s,N

)
. (46)

for i = 1, . . . , n. Similiarly, since a simple substitution cipher is being used, the probability mass of
Yj is given by

pY1(y) = pX1

(
h-1(y)

)
(47)

for j = 1, . . . , n.
The entropy of the Zipf distribution is given by the following theorem.

Theorem 7.2. The entropy of the Zipf distribution with parameters s and N is given by

H1(N, s) = H−1
N,s

N∑
k=1

k−s (s log2 k + log2HN,s) . (48)
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Proof.

H1(N, s) = −
N∑
k=1

pK(k | s,N) log2 pK(k | s,N) (49)

= −
N∑
k=1

k−sH−1
N,s log2

(
k−sH−1

N,s

)
(50)

= H−1
N,s

N∑
k=1

k−s (s log2 k + log2HN,s) . (51)

Two limiting cases are given by the following corollaries.

Corollary 7.3. The maximum entropy results when the Zipf distribution has a parameter value
s = 0 and is given by

H1(s = 0, N) = log2N . (52)

Proof.

H1(0, N) = H−1
N,0

N∑
k=1

k0 (0 log2 k + log2HN,0) (53)

= N−1
N∑
k=1

log2N (54)

= log2N . (55)

Corollary 7.4. The minimum entropy results when the Zipf distribution has a parameter value
s→∞ and is given by

lim
s→∞

H1(s,N) = 0 . (56)

Proof.

lim
s→∞

H1(s,N) = HN,∞

N∑
k=1

k−∞ (log2 k + log2HN,∞) (57)

= 0
N∑
k=1

0 (log2 k + log2 0) (58)

=
N∑
k=1

0 log2 0 . (59)

The limit
lim
a→0

a log2 a = 0 , (60)

thus
lim
s→∞

H1(s,N) = 0 . (61)
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Figure 1: Accuracy vs sample size where N = 1000 for several different entropies
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In Fig. 1, we map the accuracy of the adversary with respect to sample size for various entropy
levels. The greater the entropy, the less accurate the mapping is expected to be. At one extreme,
we have an entropy of 0 (minimum entropy) in which 100% of the traffic is successfully mapped
after viewing a sample of size 1 and at the other extreme we have an entropy of 6.64 (maximum
entropy) where the accuracy is given by pure random chance and is not correlated with sample
size.

8 Application: resilience engineering

Definition 8.1 (Resilience engineering). Here is the definition.

From a resilience engineering perspective, we are interested in the probability that the adversary
has compromised the sample of t trapdoors as given by

Pr[Ct ≥ α] , (62)

where α is the minimum acceptable level of confidentiality. If the probability that this minimum
level is relatively low (e.g., less than 95%), the trapdoor signatures could be reassigned to reestablish
confidentiality.

As t → ∞, Eq. (62) goes to 0. The minimum sample size the adversary may observe without
exceeding some specified level of risk is given by the following definition.

Definition 8.2. The maximum number of trapdoors the adversary may observe with an acceptable
level of risk of successfully compromising the confidentiality of the system is given by

t∗ = argmin
t

Pr[Ct > α] > β , (63)

where

α is the minimum level of confidentiality the Encrypted Search system seeks to maintain and

β is an unacceptable level of risk (probability) that the minimum level of confidentiality is not
met.
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Given a set of Bootstrap resample of m confidentiality statistics

K =
{
C

(1)
t , . . . , C

(m)
t

}
,

we may estimate Eq. (62) in two ways. The most straightforward way is the proportion of the
sample that is greater than α as given by the statistic

Pr[Ct ≥ α] ≈ |A|
m

, (64)

where
A = {C ∈ K : C > α} . (65)

However, by Theorem 5.4, Ct converges in distribution to a normal distribution. Thus, by the large
sample approximation,

Pr[Ct ≥ α] ≈ 1− ϕ

(
α− C̄t

st−1

)
, (66)

where ϕ is the cumulative distribution function of the standard normal, C̄t is the sample mean, and
st−1 is the sample standard deviation. Substituting Eq. (66) into Eq. (63) and simplifying results
in a statistic of t∗ given by

t̂∗ = argmin
t

ϕ

(
α− C̄t

st−1

)
< 1− β . (67)

9 Conclusions and future work

The primary contributions in this paper are two-folds. First, there has not been much work for
studying how safe encrypted searches are against frequency attacks, which can be measured by
a large number of attackers for long period of time, possibly infinitely long. We provide studies
on the resilience of encrypted searches against frequency attacks from the view point of resilience
engineering approach to enhance security on encrypted searches. Resilience engineering is a new way
of enhancing safety by precisely estimating the level of possible threats to a system and feeding them
back to adjusting or re-designing the system to maintain the acceptable level of safetyAssociation.

Our second contribution is development of a new method, Moving Average Bootstrap (MAB)
method, which efficiently and accurately calculates the estimator for the minimum number of
encrypted words (N∗) an adversary needs to achieve a given accuracy level (p∗) with a certain
level of confidence as soon as a relatively small number of samples (n) (i.e., encrypted words)
are submitted by legitimate users. Thus, the MAB method will let the defenders calculate the
estimator at an early stage without waiting for a large number of queries submitted by legitimate
users. Especially from the view point of “tractability”, calculating the estimator using, not to
mention an infinitely large number of encrypted words, a large number of encrypted words takes
time (waiting for a large number of encrypted words to be submitted) and huge storage (storage
space to hold the submitted encrypted words) is required.

Our proposed MAB method calculated the estimated number of encrypted search queries an
adversary needs to observe (N∗) for achieving a given accuracy level, p∗ = 0.30, at the confidence
level of 95% using only 5% of the actual observations (250/5000) (Figure 5 (c)). Assuming that
the increase in the time an adversary needs to achieve a certain p∗ is proportional to the ratio
in the increase of the number of the encrypted words observed by an adversary (n) for a large
number of encrypted words, the MAB method would allow a defender to estimate N∗ in 5% of
time (without waiting for legitimate users to issue a large number of encrypted words). We are
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currently performing analyses using higher p∗ (0.55 through 0.80) for different levels of confidence
(90 to 98%) for observing how they affect the performance of MAB method and for observing if
there is any pathological case for MAB method.

References

Resilience Engineering Association. About resilience engineering. URL http://www.

resilience-engineering-association.org.

Dan Boneh, Giovanni Di Crescenzo, Rafail Ostrovsky, and Giuseppe Persiano. Public key encryp-
tion with keyword search. pages 506–522, 2004.

Jin Wook Byun, Hyun Suk Rhee, Hyun-A Park, and Dong Hoon Lee. Off-line keyword guessing
attacks on recent keyword search schemes over encrypted data. Secure Data Management, Lecture
Notes in Computer Science, 4165:75–83, 2006.

Ning Cao, Cong Wang, Ming Li, Kui Ren, and Wenjing Lou. Privacy-preserving multi-keyword
ranked search over encrypted cloud data. IEEE Transactions on Parallel and Distributed Systems,
25(1):222–233, January 2014.

William R. Claycomb and Alex Nicoll. Insider threats to cloud computing: Directions for new
research challenges. pages 388–394, 2012.

Ik Rae Jeong, Jeong Ok Kwon, Dowon Hong, and Dong Hoon Lee. Constructing peks schemes
secure against keyword guessing attacks is possible? Computer Communications Express, 32(2):
394–396, 2009.

Qian Wang Jin Li, Cong Wanga, Ning Cao, Kui Ren, and Wenjing Lou. Fuzzy keyword search over
encrypted data in cloud computing. pages 441–445, 2010.

Seny Kamara and Kristin Lauter. Cryptographic cloud storage. Financial Cryptography and Data
Security, Lecture Notes in Computer Science, 6054:136–149, 2010.

Debashis Kusharya. Bootstrap methods and their application. Technometrics, 42(2):216–217,
March 2012.

Steven T. Piantadosi. Zipf’s word frequency law in natural language: A critical review and future
directions. Psychonomic Bulletin & Review, 21(5):1112–1130, October 2014.

Jean-François Raymond. Traffic analysis: Protocols, attacks, design issues, and open problems.
Designing Privacy Enhancing Technologies, Lecture Notes in Computer Science, 2009:10–29,
March 2001.

Matthieu Rivain. On the exact success rate of side channel analysis in the gaussian model. Selected
Areas in Cryptography, 5381:165–183, 2009.

S. Subashini and V. Kavitha. A survey on security issues in service delivery models of cloud
computing. Journal of Network and Computer Applications, 34(10):1–11, 2011.

Wenhai Sun, Bing Wang, Ning Cao, Ming Li, Wenjing Lou, Thomas Y. Hou, and Hui Li. Privacy-
preserving multi-keyword text search in the cloud supporting similarity-based ranking. pages
77–82, May 2013.

16

http://www.resilience-engineering-association.org
http://www.resilience-engineering-association.org


Adrian Thillard, Emmanuel Prouff, and Thomas Roche. Success through confidence: Evaluating
the effectiveness of a side-channel attack. Cryptographic Hardware and Embedded Systems, 8086:
21–36, 2013.

Wei-Chuen Yau, Swee-Huay Heng, and Bok-Min Goi. Off-line keyword guessing attacks on recent
public key encryption with keyword search schemes. pages 100–105, 2008.

Dimitrios Zissis and Dimitrios Lekkas. Addressing cloud computing security issues. Future Gener-
ation Computer Systems, 28(3):589–592, 2012.

17


	Introduction
	Related work
	Encrypted Search model
	Probabilistic model

	Threat model: known-plaintext attack
	Confidentiality statistic
	Sampling distribution of confidentiality statistic

	Mapping entropy to confidentiality
	Estimating entropy

	Case study: Zipf distribution
	Application: resilience engineering
	Conclusions and future work

