Alea: A Modern C++ Library for Algebraic Random Elements

Technical Report
Alea Development Team
September 2025
Abstract

We present alea, a C++20 header-only library that implements probability distributions and Monte Carlo methods using generic programming and type erasure. The library provides: (1) a type-erased interface for probability distributions that enables runtime polymorphism while maintaining type safety; (2) a fluent API for distribution composition using established builder pattern techniques; (3) Monte Carlo integration with parallel execution; (4) SIMD-accelerated batch sampling for selected distributions when compiled with appropriate flags; and (5) comprehensive implementations of common continuous and discrete distributions. We evaluate alea against existing C++ libraries (Boost.Random, GSL, and standard library implementations), demonstrating comparable performance with improved ease of use. Through case studies in financial modeling, A/B testing, and quality control, we illustrate the library’s practical applicability. While building on well-established techniques, alea contributes a cohesive, modern C++ interface that simplifies probabilistic programming tasks.

Keywords: Random elements, probabilistic programming, C++ templates, Monte Carlo methods, SIMD vectorization, type erasure, generic programming

1 Introduction

The modeling of random phenomena is fundamental to numerous domains including finance, engineering, machine learning, and scientific computing. The C++ standard library and existing third-party libraries provide various levels of support for random number generation and statistical distributions. However, integrating these capabilities into complex applications often requires significant boilerplate code and careful management of type hierarchies.

The alea library addresses these practical challenges by providing a unified interface for probability distributions using modern C++ techniques. Building on established patterns from the literature [2], we apply type erasure to enable runtime polymorphism for distributions while maintaining static type safety. This approach simplifies common tasks such as mixing distributions, implementing Monte Carlo methods, and building hierarchical models.

1.1 Motivation

Modern applications increasingly require sophisticated probabilistic modeling capabilities:

  • Financial Risk Management: Modeling portfolio returns with heavy-tailed distributions, copula-based dependencies, and regime-switching dynamics.

  • Machine Learning: Implementing probabilistic models, Bayesian inference, and uncertainty quantification.

  • Scientific Computing: Monte Carlo integration, MCMC sampling, and stochastic differential equations.

  • Quality Control: Statistical process control, reliability analysis, and acceptance sampling.

Existing C++ libraries like Boost.Random provide excellent low-level primitives but lack the high-level abstractions needed for complex probabilistic modeling. Libraries from other languages (NumPy, R, Julia) offer rich statistical capabilities but cannot match C++’s performance requirements in production systems.

1.2 Contributions

This work makes the following contributions:

  1. 1.

    Unified Distribution Interface: We implement a type-erased interface for probability distributions that enables runtime polymorphism while preserving type safety, building on established type erasure patterns [2].

  2. 2.

    Implementation Completeness: We provide implementations of 25+ continuous and discrete distributions with optimized sampling algorithms selected based on parameter ranges, following algorithms from [6].

  3. 3.

    Fluent API Design: We implement a builder pattern-based API for distribution composition, evaluated through usability comparisons with existing libraries.

  4. 4.

    Performance Optimization: When compiled with appropriate flags, the library provides SIMD-accelerated batch sampling for uniform and normal distributions, achieving 3.6× speedup on AVX2 hardware.

  5. 5.

    Empirical Validation: We validate correctness through statistical tests (Kolmogorov-Smirnov, Anderson-Darling) and benchmark against three existing libraries, with results showing performance within 10% of specialized implementations.

1.3 Design Principles

alea follows these design principles:

Template-Based Efficiency: Core distribution implementations use templates to enable compile-time optimization, with measured overhead of less than 5% compared to direct standard library calls.

Composability: Distributions can be composed using standard functional patterns, enabling construction of mixture models and hierarchical distributions.

Error Handling: Parameter validation uses exceptions for runtime errors, with compile-time checks where possible using C++20 concepts.

Standard Library Integration: The library follows STL conventions for random number generators, accepting any UniformRandomBitGenerator as defined in [rand.req.urng].

2 Architecture

The alea library architecture is organized around three core abstractions: random processes, random elements, and type-erased distributions. These abstractions work together to provide both mathematical rigor and practical efficiency.

2.1 Core Concepts

2.1.1 Random Process

A random process in alea is defined as a sequence of random elements {Wt} indexed by time or another parameter. The fundamental requirement is a sample(URBG&) method:

1template<typename T>
2concept RandomProcess = requires(T t, std::mt19937& g) {
3 typename T::value_type;
4 { t.sample(g) } -> std::convertible_to<
5 typename T::value_type>;
6};
Listing 1: Random Process Concept

This C++20 concept [14] enables compile-time verification of interface requirements. The sample method represents the transformation from uniform random bits to the target distribution.

2.1.2 Random Element

Following [5], we define a random element as a measurable function from a probability space (Ω,,P) to a measurable space (S,𝒮). In the context of our C++ implementation, S represents the type T in random_element<T>, and measurability is implicitly satisfied through the type system. The implementation provides:

1template <typename T>
2class random_element {
3public:
4 using value_type = T;
5
6 template <typename X>
7 random_element(X x) :
8 self_(make_shared<model<X>>(move(x))) {}
9
10 template <typename URBG>
11 T sample(URBG& gen) {
12 return self_->sample(gen);
13 }
14
15 double pdf(const T& x) const {
16 return self_->pdf(x);
17 }
18
19 double cdf(const T& x) const {
20 return self_->cdf(x);
21 }
22};
Listing 2: Random Element Type Erasure

2.1.3 Type Erasure Implementation

We employ the external polymorphism pattern [2] to provide value semantics for distributions. This well-established technique allows runtime polymorphism without inheritance hierarchies:

1template <typename T>
2struct concept_base {
3 virtual ~concept_base() = default;
4 virtual T sample(std::mt19937&) = 0;
5 virtual double pdf(const T&) const = 0;
6 virtual double cdf(const T&) const = 0;
7};
8
9template <typename T, typename X>
10struct model : concept_base<T> {
11 X data;
12 explicit model(X x) : data(move(x)) {}
13
14 T sample(std::mt19937& gen) override {
15 return data.sample(gen);
16 }
17
18 double pdf(const T& x) const override {
19 if constexpr (has_pdf_v<X>) {
20 return data.pdf(x);
21 } else {
22 // Monte Carlo estimation as fallback
23 // Implementation details omitted for brevity
24 return 0.0; // Placeholder
25 }
26 }
27};
Listing 3: Type Erasure Pattern

2.2 Distribution Hierarchy

alea provides a comprehensive hierarchy of probability distributions organized by mathematical properties:

Distribution BaseContinuousDiscreteExp. FamilyStableBoundedCountingFiniteLattice
Figure 1: Distribution Type Hierarchy

2.3 Memory Management

The library employs careful memory management strategies:

  • Shared Ownership: Type-erased objects use shared_ptr for safe sharing without deep copies.

  • Move Semantics: Extensive use of move semantics to avoid unnecessary allocations.

  • Aligned Allocation: SIMD operations use aligned memory for optimal vectorization.

  • Pool Allocation: Thread pools maintain pre-allocated buffers for parallel operations.

3 Implementation

3.1 Distribution Components

Each distribution in alea implements a consistent interface with optimized algorithms for sampling, PDF/CDF evaluation, and moment calculation.

3.1.1 Continuous Distributions

The continuous distribution module provides implementations of major parametric families:

1template<typename T = double>
2class normal_distribution {
3private:
4 T mean_, stddev_;
5 mutable std::normal_distribution<T> impl_;
6
7public:
8 normal_distribution(T mean, T stddev)
9 : mean_(mean), stddev_(stddev),
10 impl_(mean, stddev) {
11 if (stddev <= 0) {
12 throw std::invalid_argument(
13 "Standard deviation must be positive");
14 }
15 }
16
17 template<typename URBG>
18 T sample(URBG& gen) const {
19 return impl_(gen);
20 }
21
22 T pdf(T x) const {
23 T z = (x - mean_) / stddev_;
24 return std::exp(-0.5 * z * z) /
25 (stddev_ * std::sqrt(2 * M_PI));
26 }
27
28 T cdf(T x) const {
29 return 0.5 * (1 + std::erf(
30 (x - mean_) / (stddev_ * std::sqrt(2))));
31 }
32
33 T mean() const { return mean_; }
34 T variance() const { return stddev_ * stddev_; }
35};
Listing 4: Normal Distribution Implementation

3.1.2 Discrete Distributions

Discrete distributions employ specialized algorithms for efficient sampling:

1template<typename T = double>
2class poisson_distribution {
3private:
4 T lambda_;
5
6 // Knuth’s algorithm for small lambda
7 template<typename URBG>
8 int sample_knuth(URBG& gen) const {
9 T L = std::exp(-lambda_);
10 int k = 0;
11 T p = 1.0;
12
13 do {
14 k++;
15 p *= std::uniform_real_distribution<T>
16 (0, 1)(gen);
17 } while (p > L);
18
19 return k - 1;
20 }
21
22 // Transformed rejection for large lambda
23 template<typename URBG>
24 int sample_transformed(URBG& gen) const {
25 // PTRS algorithm implementation
26 // ...
27 }
28
29public:
30 template<typename URBG>
31 int sample(URBG& gen) const {
32 if (lambda_ < 10) {
33 return sample_knuth(gen);
34 } else {
35 return sample_transformed(gen);
36 }
37 }
38};
Listing 5: Poisson Distribution with Rejection Method

3.2 Advanced Features

3.2.1 Fluid API

The fluent interface enables intuitive distribution composition:

1template<typename T>
2class distribution_builder {
3private:
4 std::function<T(std::mt19937&)> sampler_;
5
6public:
7 distribution_builder& normal(T mean, T std) {
8 auto dist = normal_distribution<T>(mean, std);
9 sampler_ = [dist](auto& gen) {
10 return dist.sample(gen);
11 };
12 return *this;
13 }
14
15 distribution_builder& truncate(T min, T max) {
16 auto prev = sampler_;
17 sampler_ = [prev, min, max](auto& gen) {
18 T value;
19 do {
20 value = prev(gen);
21 } while (value < min || value > max);
22 return value;
23 };
24 return *this;
25 }
26
27 distribution_builder& transform(
28 std::function<T(T)> f) {
29 auto prev = sampler_;
30 sampler_ = [prev, f](auto& gen) {
31 return f(prev(gen));
32 };
33 return *this;
34 }
35
36 random_element<T> build() {
37 return random_element<T>(
38 [s = sampler_](auto& gen) {
39 return s(gen);
40 });
41 }
42};
Listing 6: Fluid API Implementation

3.2.2 Joint Distributions

Joint distributions support both independent and dependent components:

1template<typename... Ts>
2class joint_distribution {
3private:
4 std::tuple<Ts...> marginals_;
5 copula_base* copula_;
6
7public:
8 template<typename URBG>
9 auto sample(URBG& gen) {
10 // Generate uniform variates
11 auto uniforms = copula_->sample(gen);
12
13 // Transform through marginal quantiles
14 return std::apply([&](auto&... dists) {
15 size_t i = 0;
16 return std::make_tuple(
17 dists.quantile(uniforms[i++])...);
18 }, marginals_);
19 }
20};
Listing 7: Joint Distribution with Copula

3.2.3 Monte Carlo Integration

The Monte Carlo module provides parallel integration with adaptive sampling:

1template<typename T>
2class parallel_monte_carlo {
3private:
4 thread_pool pool_;
5
6public:
7 template<typename F, typename D>
8 T integrate(F&& f, D&& dist, size_t n) {
9 size_t chunk = n / pool_.size();
10 std::vector<std::future<T>> futures;
11
12 for (size_t i = 0; i < pool_.size(); ++i) {
13 futures.push_back(pool_.async([=] {
14 std::mt19937 gen(std::random_device{}());
15 T sum = 0;
16 for (size_t j = 0; j < chunk; ++j) {
17 auto x = dist.sample(gen);
18 sum += f(x) / dist.pdf(x);
19 }
20 return sum;
21 }));
22 }
23
24 T total = 0;
25 for (auto& fut : futures) {
26 total += fut.get();
27 }
28 return total / n;
29 }
30};
Listing 8: Parallel Monte Carlo Integration

3.3 SIMD Optimization

SIMD support provides vectorized sampling for improved throughput:

1#ifdef ALEA_ENABLE_SIMD
2template<typename T>
3class simd_sampler {
4private:
5 using vec_t = __m256d; // AVX2
6 std::mt19937 gen_;
7
8public:
9 void sample_batch(
10 uniform_distribution<T>& dist,
11 T* out, size_t n) {
12
13 // Process 4 doubles at a time
14 size_t simd_n = (n / 4) * 4;
15
16 // Note: Actual implementation uses vectorized
17 // xorshift algorithm - simplified here
18 for (size_t i = 0; i < simd_n; i += 4) {
19 // Generate uniform [0,1) using SIMD
20 alignas(32) double uniform[4];
21 for (int j = 0; j < 4; ++j) {
22 uniform[j] = std::uniform_real_distribution<>(
23 0.0, 1.0)(gen_);
24 }
25 vec_t vec_u = _mm256_load_pd(uniform);
26
27 // Transform to [min, max)
28 vec_t min_v = _mm256_set1_pd(dist.min());
29 vec_t range = _mm256_set1_pd(
30 dist.max() - dist.min());
31 vec_t result = _mm256_fmadd_pd(
32 vec_u, range, min_v);
33 _mm256_storeu_pd(out + i, result);
34 }
35
36 // Handle remainder with scalar code
37 for (size_t i = simd_n; i < n; ++i) {
38 out[i] = dist.sample(gen_);
39 }
40 }
41};
42#endif
Listing 9: SIMD-Accelerated Sampling

4 Supported Distributions

alea provides comprehensive coverage of standard probability distributions with optimized implementations.

4.1 Continuous Distributions

Table 1: Continuous Distributions
Distribution Parameters Support
Normal μ,σ (,)
Exponential λ [0,)
Gamma α,β (0,)
Beta α,β [0,1]
Uniform a,b [a,b]
Weibull λ,k [0,)
Log-normal μ,σ (0,)
Student’s t ν (,)
Chi-squared k [0,)
F-distribution d1,d2 [0,)
Cauchy x0,γ (,)
Logistic μ,s (,)
Pareto xm,α [xm,)

Each continuous distribution implements:

  • Efficient sampling algorithms

  • Analytical PDF and CDF when available

  • Quantile functions for inverse transform sampling

  • Moment calculations (mean, variance, skewness, kurtosis)

4.2 Discrete Distributions

Table 2: Discrete Distributions
Distribution Parameters Support
Bernoulli p {0,1}
Binomial n,p {0,1,,n}
Poisson λ 0
Geometric p
Negative Binomial r,p 0
Hypergeometric N,K,n [max(0,nN+K),
min(n,K)]
Categorical 𝐩 {1,,k}
Multinomial n,𝐩 0k
Uniform Discrete a,b {a,,b}

4.3 Special Distributions

alea also supports specialized distributions for specific applications:

  • Mixture Distributions: Weighted combinations of component distributions

  • Truncated Distributions: Distributions restricted to a specified range

  • Empirical Distributions: Non-parametric distributions from data

  • Kernel Density Estimates: Smooth approximations of empirical distributions

  • Copulas: Gaussian, Clayton, Gumbel, and Frank copulas for dependence modeling

5 Testing Strategy

5.1 Test-Driven Development

alea follows strict TDD principles with comprehensive test coverage:

1TEST_CASE("Normal distribution properties") {
2 std::mt19937 gen(42);
3 normal_distribution<double> dist(10, 2);
4
5 // Generate sample
6 std::vector<double> samples;
7 for (int i = 0; i < 10000; ++i) {
8 samples.push_back(dist.sample(gen));
9 }
10
11 // Test mean convergence
12 double sample_mean = std::accumulate(
13 samples.begin(), samples.end(), 0.0)
14 / samples.size();
15 REQUIRE(std::abs(sample_mean - 10) < 0.1);
16
17 // Test variance convergence
18 double sample_var = 0;
19 for (auto x : samples) {
20 sample_var += (x - sample_mean) *
21 (x - sample_mean);
22 }
23 sample_var /= samples.size();
24 REQUIRE(std::abs(sample_var - 4) < 0.2);
25
26 // Test normality (Shapiro-Wilk)
27 REQUIRE(shapiro_wilk_test(samples) > 0.05);
28}
Listing 10: Property-Based Testing Example

5.2 Coverage Analysis

The testing suite achieves comprehensive coverage:

Table 3: Test Coverage Statistics
Module Line Coverage Branch Coverage
Core 95% 92%
Continuous Distributions 93% 89%
Discrete Distributions 94% 91%
Joint Distributions 91% 88%
Monte Carlo 89% 85%
Fluid API 96% 93%
SIMD 87% 84%
Overall 92% 89%

5.3 Test Categories

  • Unit Tests: Individual component testing

  • Integration Tests: Cross-module interactions

  • Property Tests: Mathematical property verification

  • Performance Tests: Benchmark suites

  • Stress Tests: Large-scale simulations

  • Edge Case Tests: Boundary conditions and error handling

6 Performance

6.1 Benchmarking Methodology

Performance evaluation uses Google Benchmark with statistical analysis:

1static void BM_NormalSampling(
2 benchmark::State& state) {
3 std::mt19937 gen(42);
4 normal_distribution<double> dist(0, 1);
5
6 for (auto _ : state) {
7 double x = dist.sample(gen);
8 benchmark::DoNotOptimize(x);
9 }
10
11 state.SetItemsProcessed(state.iterations());
12}
13BENCHMARK(BM_NormalSampling);
Listing 11: Benchmark Example

6.2 Performance Results

Table 4: Sampling Performance (ns/sample, mean ± std over 100 runs)
Distribution Alea Boost 1.82 GCC 11 STL
Uniform 3.2±0.1 3.4±0.1 3.3±0.1
Normal 8.7±0.3 9.1±0.2 8.9±0.3
Exponential 6.4±0.2 6.8±0.2 6.6±0.2
Poisson (λ=10) 42.3±1.1 45.7±1.3 44.1±1.2
Binomial (n=100) 156.8±3.2 168.4±3.8 162.3±3.5

Test environment: Intel i7-11700K @ 3.6GHz, 32GB RAM, Ubuntu 22.04, GCC 11.2.0 with -O2 optimization. Each measurement represents the median of 100 runs with 1M samples per run.

6.3 SIMD Performance

SIMD vectorization provides measurable speedup for batch operations when explicitly enabled at compile time with -DALEA_ENABLE_SIMD and appropriate architecture flags:

1011021031041052468Batch SizeSpeedupAVX2AVX-512
Figure 2: SIMD Speedup vs Scalar Implementation

6.4 Memory Efficiency

Type erasure introduces a small memory overhead due to virtual function table pointers and shared_ptr control blocks:

Table 5: Memory Footprint (bytes, 64-bit system)
Type Size Overhead
normal_distribution<double> 24 baseline
random_element<double> 32 8 (shared_ptr)
joint_distribution<T,U> 48 16 (2×shared_ptr)

The overhead is constant regardless of distribution complexity, making it negligible for non-trivial applications.

7 Applications

7.1 Financial Risk Modeling

alea excels at complex financial models with heavy-tailed distributions and copula-based dependencies:

1// Model portfolio with Student’s t returns
2auto returns = distribution<double>()
3 .student_t(4) // Heavy tails
4 .scale(0.02) // 2% daily volatility
5 .shift(0.0005) // 0.05% daily drift
6 .build();
7
8// Simulate Value-at-Risk
9parallel_monte_carlo<double> mc(8);
10auto var_95 = mc.quantile(
11 [&](auto& gen) {
12 double portfolio_value = 1000000;
13 for (int day = 0; day < 10; ++day) {
14 portfolio_value *=
15 (1 + returns.sample(gen));
16 }
17 return portfolio_value;
18 },
19 100000, // simulations
20 0.05 // 5% quantile
21);
Listing 12: Portfolio Risk Simulation

7.2 A/B Testing

Bayesian A/B testing with Beta-Binomial conjugacy:

1// Prior: uniform Beta(1,1)
2beta_distribution<double> prior_a(1, 1);
3beta_distribution<double> prior_b(1, 1);
4
5// Update with data
6int successes_a = 120, trials_a = 1000;
7int successes_b = 145, trials_b = 1000;
8
9// Posterior distributions
10beta_distribution<double> posterior_a(
11 1 + successes_a,
12 1 + trials_a - successes_a);
13beta_distribution<double> posterior_b(
14 1 + successes_b,
15 1 + trials_b - successes_b);
16
17// P(B > A) via Monte Carlo
18double p_b_better = mc.estimate_probability(
19 [&](auto& gen) {
20 return posterior_b.sample(gen) >
21 posterior_a.sample(gen);
22 },
23 10000
24);
Listing 13: Bayesian A/B Test

7.3 Quality Control

Statistical process control with control charts:

1// Process with known parameters
2normal_distribution<double> process(100, 2);
3
4// Sample size for inspection
5int n = 5;
6
7// Control limits for X-bar chart
8double ucl = process.mean() +
9 3 * process.stddev() / std::sqrt(n);
10double lcl = process.mean() -
11 3 * process.stddev() / std::sqrt(n);
12
13// Simulate inspection
14auto inspect = [&](auto& gen) {
15 double sum = 0;
16 for (int i = 0; i < n; ++i) {
17 sum += process.sample(gen);
18 }
19 double x_bar = sum / n;
20 return x_bar >= lcl && x_bar <= ucl;
21};
22
23// Operating characteristic curve
24auto oc_curve = [&](double shift) {
25 normal_distribution<double>
26 shifted(100 + shift, 2);
27 return mc.estimate_probability(
28 inspect, 10000);
29};
Listing 14: Quality Control Limits

7.4 Scientific Computing

Monte Carlo integration for high-dimensional problems:

1// Integrate over 10D hypercube
2int dim = 10;
3auto integrand = [](const vector<double>& x) {
4 double sum = 0;
5 for (auto xi : x) {
6 sum += xi * xi;
7 }
8 return std::exp(-sum);
9};
10
11// Importance sampling with multivariate normal
12mvn_distribution<10> importance(
13 zeros<10>(), 0.5 * identity<10>());
14
15double integral = mc.integrate(
16 integrand, importance, 1000000);
Listing 15: High-Dimensional Integration

8 Future Work

8.1 Planned Enhancements

  1. 1.

    GPU Acceleration: CUDA/ROCm backends for massive parallelism

  2. 2.

    Automatic Differentiation: Integration with AD libraries for gradient-based optimization

  3. 3.

    Probabilistic Programming: DSL for model specification

  4. 4.

    Time Series: ARIMA, GARCH, and state-space models

  5. 5.

    Spatial Statistics: Random fields and kriging

  6. 6.

    Stochastic Processes: Brownian motion, Lévy processes, jump diffusions

8.2 Research Directions

  • Quasi-Monte Carlo: Low-discrepancy sequences for improved convergence

  • Multilevel Monte Carlo: Variance reduction for nested simulations

  • Symbolic Computation: Analytical derivation of distribution properties

  • Approximation Theory: Fast approximate sampling for complex distributions

9 Related Work

9.1 C++ Libraries

Boost.Random [3] provides a comprehensive set of random number generators and distributions, serving as the inspiration for the C++11 <random> header. Our work builds on these foundations by adding type erasure for runtime polymorphism and a fluent interface for distribution composition.

GNU Scientific Library (GSL) [7] offers extensive statistical functions with a C interface. While comprehensive, GSL’s procedural design lacks the type safety and RAII principles of modern C++. We provide similar functionality within a C++ type system.

Eigen [8] includes random number generation primarily for matrix initialization. Our library complements Eigen by providing richer distribution support that integrates with Eigen’s matrix types.

Recent work on random number generation in C++ [11] addresses deficiencies in std::generate_canonical. We adopt these improvements and extend them with higher-level abstractions.

9.2 Random Number Generation Algorithms

Our implementation incorporates established algorithms from the literature: - Marsaglia’s method for normal distributions [12] - Walker’s alias method for discrete distributions [16] - Ahrens-Dieter transformations for gamma and beta distributions [1] - Lemire’s fast bounded integer generation [10]

These algorithms are selected based on parameter ranges following the comprehensive survey by Devroye [6] and recommendations from Knuth [9].

9.3 Probabilistic Programming

Domain-specific languages like Stan [4], PyMC3 [13], and Edward [15] excel at Bayesian inference but require specialized runtime environments. Our library provides similar distribution primitives within standard C++ compilation models, enabling deployment in constrained environments where these frameworks cannot operate.

10 Conclusion

We have presented alea, a C++20 header-only library that provides type-erased interfaces for probability distributions and Monte Carlo methods. The library combines established techniques—type erasure for runtime polymorphism, template metaprogramming for compile-time optimization, and SIMD intrinsics for vectorization—into a cohesive framework for probabilistic computation.

Our empirical evaluation demonstrates:

  • Performance within 10% of specialized implementations for common distributions

  • 3.6× speedup for batch sampling with AVX2 vectorization when explicitly enabled

  • Memory overhead of 8-16 bytes per type-erased distribution object

  • Statistical correctness validated through Kolmogorov-Smirnov and Anderson-Darling tests

The library’s practical applicability is demonstrated through case studies in financial modeling, A/B testing, and quality control. While alea does not introduce novel mathematical or algorithmic contributions, it provides a modern C++ interface that simplifies common probabilistic programming tasks.

10.1 Limitations

The current implementation has several limitations:

  • Type erasure introduces virtual function call overhead

  • SIMD acceleration requires manual compilation flags and is limited to specific distributions

  • No automatic differentiation support for gradient-based optimization

  • Limited to univariate and simple multivariate distributions

10.2 Future Work

Future development will focus on:

  • GPU acceleration for large-scale Monte Carlo simulations

  • Integration with automatic differentiation libraries

  • Support for more complex dependency structures (copulas, graphical models)

  • Quasi-Monte Carlo methods for improved convergence rates

Acknowledgments

We thank the open-source community for valuable feedback and contributions. Special recognition goes to the Boost, Eigen, and GSL projects for inspiration and foundational work in C++ numerical computing.

References

  • [1] J.H. Ahrens and U. Dieter (1974) Computer Methods for Sampling from Gamma, Beta, Poisson and Binomial Distributions. Computing 12 (3), pp. 223–246. Cited by: §9.2.
  • [2] A. Alexandrescu (2001) Modern C++ Design: Generic Programming and Design Patterns Applied. Addison-Wesley. External Links: ISBN 0201704315 Cited by: item 1, §1, §2.1.3.
  • [3] Boost Community (2023) Boost.Random - Boost C++ Libraries. Note: https://www.boost.org/doc/libs/release/doc/html/random.htmlAccessed: 2025-09-16 Cited by: §9.1.
  • [4] B. Carpenter, A. Gelman, M. D. Hoffman, D. Lee, B. Goodrich, M. Betancourt, M. Brubaker, J. Guo, P. Li, and A. Riddell (2017) Stan: A probabilistic programming language. Journal of Statistical Software 76 (1). Cited by: §9.3.
  • [5] G. Casella and R. L. Berger (2002) Statistical Inference. 2nd edition, Duxbury Press. External Links: ISBN 0534243126 Cited by: §2.1.2.
  • [6] L. Devroye (1986) Non-Uniform Random Variate Generation. Springer-Verlag. External Links: ISBN 0387963057 Cited by: item 2, §9.2.
  • [7] M. Galassi, J. Davies, J. Theiler, B. Gough, G. Jungman, P. Alken, M. Booth, and F. Rossi (2023) GNU Scientific Library Reference Manual. 3rd edition, Network Theory Ltd.. External Links: ISBN 0954612078 Cited by: §9.1.
  • [8] G. Guennebaud, B. Jacob, et al. (2023) Eigen v3. Note: http://eigen.tuxfamily.orgAccessed: 2025-09-16 Cited by: §9.1.
  • [9] D. E. Knuth (2014) The Art of Computer Programming, Volume 2: Seminumerical Algorithms. 3rd edition, Addison-Wesley. External Links: ISBN 978-0201896848 Cited by: §9.2.
  • [10] D. Lemire (2019) Fast Random Integer Generation in an Interval. In ACM Transactions on Modeling and Computer Simulation, Vol. 29, pp. 1–12. Cited by: §9.2.
  • [11] H. Liber (2018) P0952R0: A New Specification for std::generate_canonical. In ISO/IEC JTC1/SC22/WG21, Cited by: §9.1.
  • [12] G. Marsaglia (2003) Xorshift RNGs. Journal of Statistical Software 8 (14), pp. 1–6. Cited by: §9.2.
  • [13] J. Salvatier, T. V. Wiecki, and C. Fonnesbeck (2016) Probabilistic programming in Python using PyMC3. PeerJ Computer Science 2, pp. e55. Cited by: §9.3.
  • [14] B. Stroustrup (2013) The C++ Programming Language. 4th edition, Addison-Wesley. External Links: ISBN 0321563840 Cited by: §2.1.1.
  • [15] D. Tran, A. Kucukelbir, A. B. Dieng, M. Rudolph, D. Liang, and D. M. Blei (2016) Edward: A library for probabilistic modeling, inference, and criticism. In arXiv preprint arXiv:1610.09787, Cited by: §9.3.
  • [16] A. J. Walker (1977) An Efficient Method for Generating Discrete Random Variables with General Distributions. ACM Transactions on Mathematical Software 3 (3), pp. 253–256. Cited by: §9.2.

Appendix A API Reference

A.1 Core Types

1namespace alea {
2 // Random element with type erasure
3 template<typename T>
4 class random_element;
5
6 // Distribution base classes
7 template<typename T>
8 class continuous_distribution;
9
10 template<typename T>
11 class discrete_distribution;
12
13 // Joint distributions
14 template<typename... Ts>
15 class joint_distribution;
16
17 // Conditional distributions
18 template<typename T>
19 class conditional_distribution;
20}
Listing 16: Core Type Synopsis

A.2 Fluent API

1namespace alea::fluent {
2 template<typename T>
3 class distribution_builder {
4 // Distribution factories
5 auto& normal(T mean, T std);
6 auto& exponential(T rate);
7 auto& uniform(T min, T max);
8 // ... more distributions
9
10 // Transformations
11 auto& truncate(T min, T max);
12 auto& transform(function<T(T)>);
13 auto& scale(T factor);
14 auto& shift(T offset);
15
16 // Build final distribution
17 random_element<T> build();
18 };
19}
Listing 17: Fluent API Synopsis

A.3 Monte Carlo

1namespace alea::monte_carlo {
2 template<typename T>
3 class monte_carlo {
4 T estimate_mean(auto f, size_t n);
5 T estimate_variance(auto f, size_t n);
6 T estimate_quantile(auto f, size_t n, T p);
7 T integrate(auto f, auto dist, size_t n);
8 };
9
10 template<typename T>
11 class parallel_monte_carlo
12 : public monte_carlo<T> {
13 explicit parallel_monte_carlo(
14 size_t threads);
15 };
16}
Listing 18: Monte Carlo API Synopsis