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Abstract

We consider the problem of estimating component failure rates
in series systems when observations consist of system failure times
paired with partial information about the failed component. For the
case where component lifetimes follow exponential distributions, we
derive closed-form expressions for the maximum likelihood estima-
tor, the Fisher information matrix, and establish sufficient statistics.
The asymptotic sampling distribution of the estimator is character-
ized and confidence intervals are provided. A detailed analysis of a
three-component system demonstrates the theoretical results.
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1 Introduction
Series systems are fundamental in reliability engineering: the system fails
whenever any single component fails. In many practical situations, the exact
cause of system failure cannot be determined with certainty, but can be
narrowed to a subset of components. This partial information is known
as masked failure data. For example, in electronic systems a diagnostic test
might isolate a failure to one of two circuit boards without determining which
board actually failed; in medical devices, system failure might be attributed
to a subset of components based on failure mode symptoms; or in aerospace
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systems, post-failure analysis might narrow the cause to a specific subsystem
but cannot identify the individual component responsible.

The problem arises in two common scenarios: (1) diagnostic limitations
where identifying the exact failed component requires destructive testing or
prohibitive expense, and (2) field data collection where only partial diag-
nostic information is recorded. Despite this incomplete information, engi-
neers must estimate component-level reliability parameters to make design
improvements, optimize maintenance schedules, and predict system lifetime
distributions.

1.1 Related Work

The analysis of masked failure data has its roots in competing risks theory.
Cox [4] introduced the latent failure time model for analyzing exponentially
distributed lifetimes with multiple failure types, establishing the foundational
framework for modeling situations where multiple competing causes may lead
to system failure. This work demonstrated that under exponential assump-
tions, the failed component identity and system lifetime can be independent
random variables, a property that proves crucial for the analysis in this paper.

Miyakawa [12] pioneered the application of competing risks methods specif-
ically to masked system failure data, deriving closed-form maximum likeli-
hood estimates for a two-component series system with exponential compo-
nent lifetimes. Usher and Hodgson [15] extended this approach, introducing
general maximum likelihood methods for estimating component reliability
from masked system life-test data and providing computational procedures
for series systems. Lin et al. [11] further developed exact maximum likeli-
hood estimation procedures for three-component systems under more general
masking scenarios.

Dinse [5] developed nonparametric methods for partially-complete time
and type of failure data, introducing an iterative algorithm yielding distribution-
free estimates that converge to maximum likelihood solutions. This work
established that useful inference is possible even when the failure cause is
only partially observed.

The 1990s saw significant development of Bayesian approaches to masked
data. Reiser et al. [13] introduced Bayesian inference methods for masked
system lifetime data, while Guttman et al. [9] addressed dependent masking
scenarios where the probability of masking depends on the true cause of fail-
ure, developing Bayesian methodology for two-component systems. These
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Bayesian approaches provided posterior distributions for component reliabil-
ities but did not derive closed-form expressions for frequentist estimators or
their asymptotic properties.

Flehinger et al. [6, 7] contributed to the theoretical foundations by study-
ing survival analysis with competing risks and masked failure causes, develop-
ing parametric models that accommodate general patterns of missing failure
types. Sarhan [14] provided both maximum likelihood and Bayes procedures
for estimating component reliabilities in series systems with exponentially
distributed lifetimes, focusing on practical implementation issues.

More recent work has expanded the scope to include interval-censored
data [8], Bayesian modeling frameworks [10], and applications to specific
engineering contexts. The competing risks framework continues to provide a
natural setting for masked data analysis [1], connecting reliability engineering
with survival analysis and biostatistics.

Despite this substantial body of work, closed-form analytical results re-
main limited. Specifically:

• The Fisher information matrix for masked system data has not been
derived in closed form for general series systems, even under exponential
assumptions

• Asymptotic properties of maximum likelihood estimators have not been
fully characterized without numerical computation

• Minimal sufficient statistics have not been identified for general mask-
ing patterns

• Most existing methods rely on numerical optimization or EM algo-
rithms without explicit characterization of estimator variance and co-
variance structure

This paper addresses these gaps by providing complete analytical results
for the exponential case. The exponential distribution is a cornerstone of
reliability theory [2], justified in several contexts: systems subject to random
external shocks, systems with constant hazard rates, and early-life failure
analysis where wear-out has not yet begun. The exponential assumption
also serves as a limiting case for other distributions and provides a baseline
for comparison with more complex models. More importantly, the exponen-
tial case admits closed-form solutions that provide direct insight into the
information structure of masked failure data.
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1.2 Contributions

This paper provides the first complete analytical treatment of maximum
likelihood estimation for series systems with masked failure data under ex-
ponential component lifetimes. Our main contributions are:

1. Explicit Fisher information matrix: We derive a closed-form ex-
pression for the Fisher information matrix under arbitrary masking
patterns, enabling direct computation of asymptotic variances without
numerical differentiation or Monte Carlo simulation

2. Sufficient statistics: The mean system lifetime and candidate set
frequency vector constitute sufficient statistics, reducing the data to
1 +

(
m
w

)
real numbers

3. Closed-form MLE for w = m−1 masking: For masking cardinality
w = m−1 (where each candidate set excludes exactly one component),
we derive an explicit closed-form solution to the likelihood equations
for arbitrary m, eliminating the need for numerical optimization. This
represents the first known closed-form MLE for non-trivial masking
scenarios. The three-component case (m = 3, w = 2) is developed in
detail

4. Asymptotic distribution theory: We characterize the asymptotic
sampling distribution of the MLE and provide Wald-type confidence
intervals with explicit formulas for coverage

5. Numerical validation: We provide Monte Carlo evidence confirming
the theoretical asymptotic covariance matches empirical behavior for
finite samples

The closed-form results for w = m−1 are particularly significant because
this configuration represents the simplest non-degenerate masking scenario:
when w = 1 there is no masking (exact cause identification), and when w = m
there is complete masking (no diagnostic information). The w = m− 1 case
captures the essential statistical structure of masked data while admitting
analytical solutions.
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1.3 Paper organization

Section 2 introduces the probabilistic model for series systems with masked
failures. Section 3 develops the likelihood and Fisher information for general
parametric families. Section 4 presents the main results for exponentially dis-
tributed components, including the MLE, information matrix, and sufficient
statistics. Section 5 provides detailed analysis of three-component systems.
Section 6 concludes with discussion.

2 Probabilistic Model

2.1 Series System Lifetime

Consider a system composed of m components. Component j has a random
lifetime Tj > 0 for j = 1, . . . ,m. We make the following assumptions:

Assumption 2.1. The component lifetimes T1, . . . ,Tm are mutually inde-
pendent.

Assumption 2.2. The system operates if and only if all components are
functioning (series configuration).

Under these assumptions, the system lifetime is:

S = min(T1, . . . ,Tm) (1)

Let Fj(t) and fj(t) denote the CDF and PDF of component j. Define the
reliability function Rj(t) = 1− Fj(t) = P{Tj > t}.

The system reliability function is:

RS(t) =
m∏
j=1

Rj(t) (2)

The system PDF is:

fS(t) =
m∑
j=1

fj(t)
m∏
k=1
k ̸=j

Rk(t)

 (3)
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2.2 Masked Component Failures

When the system fails at time t, exactly one component caused the failure.
Let K ∈ {1, . . . ,m} denote the failed component. In many applications,
K cannot be observed directly. Instead, we observe a candidate set C ⊆
{1, . . . ,m} that contains the failed component but does not uniquely identify
it.

Definition 2.3. Under uniform masking with cardinality w, given that com-
ponent k failed, the observed candidate set C is a uniformly random subset
of size w containing k. That is,

P{C = c|K = k} =

{
1

(m−1
w−1)

if k ∈ c and |c| = w

0 otherwise
(4)

Remark 2.4 (Interpretation and Implications). The uniform masking model
has two key components:

1. The failed component k is always included in the candidate set (P{k ∈
C|K = k} = 1)

2. Each non-failed component j ̸= k is included in C with equal probability
w−1
m−1

, independently

This is a strong assumption that is generally not satisfied in practice.
In real diagnostic scenarios:

• Components with similar failure modes may be systematically grouped
together

• Accessible components may be more likely to be identified than inac-
cessible ones

• Expensive tests may create diagnostic biases

• Prior failure history may influence which components are suspected

Remark 2.5 (Justification for Uniform Masking). We adopt the uniform
masking assumption because it enables analytical derivation of closed-form
expressions for the MLE, Fisher information matrix, and sufficient statistics.
These analytical results provide:
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• Direct insight into the information structure of masked failure data

• Closed-form asymptotic variance formulas (no Monte Carlo needed)

• Baseline performance bounds for comparison with more complex mask-
ing models

• Computational efficiency (no numerical optimization needed for m = 3,
w = 2)

The uniform masking model is most appropriate when:

• The diagnostic process randomly samples components for inspection

• The masking mechanism is designed to be unbiased (e.g., automated
random selection)

• No prior information about component reliabilities is used during di-
agnosis

Despite its limitations, the uniform masking model serves as a tractable
reference model for understanding masked failure data, analogous to how the
exponential distribution serves as a reference for lifetime modeling despite the
restrictive constant-hazard assumption.

Assumption 2.6. The masking mechanism (which components are included
in C) is independent of the system lifetime S and depends only on the failed
component K.

This assumption implies that the masking quality does not depend on
when the failure occurred, only on which component failed and the diagnostic
capabilities of the inspection process.

Definition 2.7. A masked system failure time is a pair (t,C) where t is
the observed system failure time and C is the candidate set. When the
masking cardinality w = |C| is fixed by experimental design, we condition on
w throughout.
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2.3 Parametric Families

We assume component j has a lifetime distribution from a parametric family
indexed by parameter θ⋆j . The system parameter is Θ⋆ = (θ⋆1, . . . , θ

⋆
m).

Our data consists of a random sample of n independent masked system
failure times:

Mn = {(t1,C1), . . . , (tn,Cn)} (5)

where we condition on fixed cardinality w for simplicity.

3 Likelihood and Fisher Information

3.1 Likelihood Function

Given the model assumptions, the conditional probability that component k
failed given system failure at time t is:

pK|S(k|t,Θ⋆) =
fk(t)

∏
j ̸=k Rj(t)

fS(t)
(6)

Under the uniform masking model (Definition 2.3) with fixed cardinality
w, we derive the conditional probability of observing candidate set C given
system failure at time t.

Proposition 3.1. Under uniform masking with cardinality w, the conditional
probability of observing candidate set C given system failure at time t is:

pC|S,W(C|t, w,Θ⋆) =

∑
j∈C fj(t)

∏
k ̸=j Rk(t)(

m−1
w−1

)
fS(t)

(7)

Proof. By the law of total probability and independence of masking from
system lifetime (Assumption 2.6):

pC|S(C|t, w) =
m∑
k=1

pC|K,S(C|k, t, w) · pK|S(k|t)

=
m∑
k=1

pC|K(C|k, w) · pK|S(k|t) (8)
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Under uniform masking (Definition 2.3):

pC|K(C|k, w) =

{
1

(m−1
w−1)

if k ∈ C

0 if k /∈ C
(9)

Therefore:

pC|S(C|t, w) =
∑
k∈C

1(
m−1
w−1

) · fk(t)∏j ̸=k Rj(t)

fS(t)

=
1(

m−1
w−1

) · ∑k∈C fk(t)
∏

j ̸=k Rj(t)

fS(t)
(10)

This result shows that the candidate set probability is proportional to
the sum of individual component failure probabilities over all components
in the candidate set, normalized by the binomial coefficient representing the
number of candidate sets containing each component.

The joint density of system failure time and candidate set is:

fC,S|W(C, t|w,Θ⋆) =
1(

m−1
w−1

)∑
j∈C

fj(t)
∏
k ̸=j

Rk(t) (11)

The likelihood function for sample Mn is:

L(Θ|Mn) =
n∏

i=1

fC,S|W(Ci, ti|w,Θ) (12)

3.2 Fisher Information Matrix

The Fisher information matrix quantifies the expected information about Θ⋆

contained in a single observation. Under regularity conditions, the (i, j)-th
element is:

[I(Θ⋆|w)]ij = −E{
∂2

∂θi∂θj
ln fC,S|W(C, S|w,Θ)}[Θ⋆] (13)

For a sample of n observations, the information is additive:

In(Θ⋆|w) = n · I(Θ⋆|w) (14)
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4 Exponentially Distributed Component Life-
times

4.1 Exponential Parametric Functions

Suppose component j has an exponentially distributed lifetime with failure
rate λ⋆

j , denoted Tj ∼ EXP(λ⋆
j). The component has:

Rj(t|λ⋆
j) = exp(−λ⋆

j t) (15)
fj(t|λ⋆

j) = λ⋆
j exp(−λ⋆

j t) (16)
hj(t|λ⋆

j) = λ⋆
j (17)

where t > 0 and λ⋆
j > 0.

Theorem 4.1. A series system with exponentially distributed component life-
times is exponentially distributed with failure rate

∑m
j=1 λ

⋆
j .

Proof. By equation (2),

RS(t|λ⋆) =
m∏
j=1

exp(−λ⋆
j t) = exp

(
−

[
m∑
j=1

λ⋆
j

]
t

)
(18)

which is the reliability function of an exponential distribution with rate∑m
j=1 λ

⋆
j .

The system PDF is:

fS(t|λ⋆) =

(
m∑
j=1

λ⋆
j

)
exp

(
−

[
m∑
j=1

λ⋆
j

]
t

)
(19)

Proposition 4.2. For exponential series systems, the failed component K
and system lifetime S are independent. The marginal distribution of K is:

pK(k|λ⋆) =
λ⋆
k∑m

j=1 λ
⋆
j

(20)

Proof. Let Λ =
∑m

j=1 λ
⋆
j . We compute:

P{K = k, S ≤ t} =
∫ t

0

λ⋆
k exp(−Λs) ds =

λ⋆
k

Λ

(
1− e−Λt

)
= P{K = k} · P{S ≤ t} (21)

since P{K = k} = λ⋆
k/Λ and P{S ≤ t} = 1− e−Λt.
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Remark 4.3. Intuitively, the memoryless property of exponential distribu-
tions means that at any instant, each component has the same probability
of being the next to fail, proportional to its rate λj. The when (system
lifetime) and which (failed component) are determined by independent pro-
cesses. This independence is specific to exponential distributions; for Weibull
or other distributions with time-varying hazard rates, K and S are generally
dependent.

The joint density is:

fK,S(k, t|λ⋆) = λ⋆
k exp

(
−

[
m∑
j=1

λ⋆
j

]
t

)
(22)

Under the uniform masking model (Definition 2.3), the joint density of
candidate set and system failure time is:

fC,S|W(C, t|w,λ⋆) =
1(

m−1
w−1

) (∑
j∈C

λ⋆
j

)
exp

(
−

[
m∑
j=1

λ⋆
j

]
t

)
(23)

This follows directly from Proposition 3.1 by substituting the exponential
PDFs and noting that for exponential distributions,

∏
k ̸=j Rk(t) = exp(−

∑
k ̸=j λ

⋆
kt).

4.2 Maximum Likelihood Estimator

The likelihood function for sample Mn with candidate sets of cardinality w
is:

L(λ|Mn) ∝ exp

(
−

[
m∑
j=1

λj

][
n∑

i=1

ti

])
n∏

i=1

(∑
j∈Ci

λj

)
(24)

The log-likelihood is:

ℓ(λ|Mn) =
n∑

i=1

ln

(∑
j∈Ci

λj

)
−

[
m∑
j=1

λj

][
n∑

i=1

ti

]
(25)

The score function has j-th component:

∂ℓ

∂λj

=
n∑

i=1

1Ci
(j)∑

k∈Ci
λk

−
n∑

i=1

ti (26)

where 1C(j) is the indicator function equal to 1 if j ∈ C and 0 otherwise.
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Theorem 4.4. The maximum likelihood estimator λ̂n maximizes the log-
likelihood (25) and satisfies the score equation ∇ℓ(λ̂n|Mn) = 0.

In general, this requires numerical solution. However, for specific cases
(notably three-component systems with w = 2), closed-form solutions exist.

4.3 Sufficient Statistics

Theorem 4.5. For masked system failure times from exponentially distributed
series systems, the statistics

t̄ =
1

n

n∑
i=1

ti and ω̂ = (ω̂C)C (27)

where ω̂C denotes the count of observations with candidate set C, for each of
the

(
m
w

)
possible candidate sets, are jointly sufficient for λ⋆.

Proof. The likelihood can be factored as:

L(λ|Mn) = exp

(
−nt̄

m∑
j=1

λj

)∏
C

(∑
j∈C

λj

)ω̂C

(28)

which depends on the data only through t̄ and ω̂. By the factorization
theorem, these are sufficient statistics.

The sufficiency result shows that all information about λ⋆ in the sample is
captured by: (1) the average system lifetime, and (2) the frequencies of each
candidate set. We do not establish minimality: the likelihood is not a regular
exponential family in λ because the natural parameters involve ln(

∑
j∈C λj),

so a separate argument would be needed to show that no further reduction
is possible.

4.4 Fisher Information Matrix

The (j, k)-th element of the Fisher information matrix for exponential series
systems is:

[I(λ⋆|w)]jk =

∑
C

(∑
p∈C λ⋆

p

)−1

1C×C(j, k)(
m−1
w−1

)∑m
p=1 λ

⋆
p

(29)
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where the sum is over all candidate sets C of cardinality w.
This formula reveals that information about the pair (λj, λk) accrues

only from candidate sets containing both components j and k (the indicator
1C×C(j, k) ensures this). Each such candidate set contributes inversely to
its total failure rate, so components with higher failure rates contribute less
information per observation. The denominator scales with the total failure
rate and the number of possible candidate sets.

Proof. From equation (23), the log-density is:

ln fC,S|W(C, t|w,λ) = ln

(∑
p∈C

λp

)
−

(
m∑
q=1

λq

)
t+ const (30)

Taking the first partial derivative with respect to λj:

∂

∂λj

ln fC,S|W =
1C(j)∑
p∈C λp

− t (31)

where 1C(j) = 1 if j ∈ C and 0 otherwise.
Taking the second partial derivative with respect to λk:

∂2

∂λj∂λk

ln fC,S|W =
∂

∂λk

[
1C(j)∑
p∈C λp

]

= −1C(j) · 1C(k)

(
∑

p∈C λp)2

= − 1C×C(j, k)

(
∑

p∈C λp)2
(32)

By definition of Fisher information:

[I(λ⋆|w)]jk = −E{
∂2

∂λj∂λk

ln fC,S|W}[λ⋆]

=
∑

C:|C|=w

∫ ∞

0

1C×C(j, k)

(
∑

p∈C λ⋆
p)

2
· fC,S|W(C, t|w,λ⋆) dt (33)
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Substituting the joint density from equation (23):

[I(λ⋆|w)]jk =
∑

C:|C|=w

1C×C(j, k)

(
∑

p∈C λ⋆
p)

2
· 1(

m−1
w−1

)
×
∫ ∞

0

(∑
p∈C

λ⋆
p

)
exp

(
−

[
m∑
q=1

λ⋆
q

]
t

)
dt (34)

Evaluating the integral using
∫∞
0

e−atdt = 1/a for a > 0:∫ ∞

0

(∑
p∈C

λ⋆
p

)
exp

(
−

[
m∑
q=1

λ⋆
q

]
t

)
dt =

∑
p∈C λ⋆

p∑m
q=1 λ

⋆
q

(35)

Therefore:

[I(λ⋆|w)]jk =
∑

C:|C|=w

1C×C(j, k)

(
∑

p∈C λ⋆
p)

2
· 1(

m−1
w−1

) · ∑p∈C λ⋆
p∑m

q=1 λ
⋆
q

=
1(

m−1
w−1

)∑m
q=1 λ

⋆
q

∑
C:|C|=w

1C×C(j, k)∑
p∈C λ⋆

p

(36)

This completes the derivation of equation (29).

Remark 4.6 (Combining Estimates from Variable Masking Cardinality). In
practice, diagnostic quality may vary across observations, resulting in data
with different masking cardinalities. Suppose the sample is partitioned into
G groups, where group g has ng observations with masking cardinality wg.
Each group yields an MLE λ̂

(g)
with asymptotic covariance 1

ng
I−1(λ⋆|wg).

The optimal combined estimator under independence is the inverse-variance
weighted average:

λ̂combined =

(
G∑

g=1

ngI(λ⋆|wg)

)−1( G∑
g=1

ngI(λ⋆|wg)λ̂
(g)

)
(37)

with asymptotic covariance

Cov(λ̂combined) =

(
G∑

g=1

ngI(λ⋆|wg)

)−1

(38)
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This combined estimator achieves minimum variance among all linear
unbiased combinations. In practice, the true parameter λ⋆ in the information
matrices is replaced by the combined estimate λ̂combined, yielding a feasible
estimator.

4.5 Asymptotic Sampling Distribution

The following regularity conditions ensure consistency and asymptotic nor-
mality of the MLE:

(R1) The true parameter λ⋆ lies in the interior of the parameter space Θ =
(0,∞)m

(R2) The Fisher information matrix I(λ⋆|w) is positive definite

(R3) The observations (ti,Ci)
n
i=1 are independent and identically distributed

Condition (R1) excludes boundary cases where components have zero
failure rate. Condition (R2) is satisfied when each component appears in at
least one candidate set, ensuring all parameters are identifiable. Condition
(R3) holds by the experimental design.

Theorem 4.7. Under conditions (R1)–(R3), as n→∞,

√
n(λ̂n − λ⋆)

d−→ MVN
(
0, I−1(λ⋆|w)

)
(39)

This result follows from standard maximum likelihood theory [3]. The
asymptotic variance-covariance matrix is the inverse of the Fisher information
matrix.

4.6 Confidence Intervals

An asymptotic (1− α)× 100% confidence interval for λ⋆
j is:

λ̂j ± z1−α/2

√
1

n
[I−1(λ̂n|w)]jj (40)

where z1−α/2 is the (1− α/2)-quantile of the standard normal distribution.
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5 Three-Component Systems
We provide detailed analysis for systems with m = 3 components, which
admits several closed-form results.

5.1 Candidate Sets of Size Two

Consider observations where each candidate set has cardinality w = m − 1,
meaning exactly one component is excluded from each candidate set. For
general m, a closed-form MLE exists.

Theorem 5.1. For m-component systems with masking cardinality w = m−
1, define for each component j:

• Aj =
∑

C∋j ω̂C: the sum of candidate set counts containing component
j

• Bj = ω̂{1,...,m}\{j}: the count for the unique candidate set excluding
component j

The MLE has the closed-form solution:

λ̂j =
Aj − (m− 2)Bj

nt̄
(41)

For three-component systems (m = 3) with w = 2, the candidate sets are
{1, 2}, {1, 3}, and {2, 3}.

Corollary 5.2. For three-component systems with w = 2, the MLE has the
closed-form solution:

λ̂n =
1

nt̄

 ω̂{1,2} + ω̂{1,3} − ω̂{2,3}
ω̂{1,2} − ω̂{1,3} + ω̂{2,3}
−ω̂{1,2} + ω̂{1,3} + ω̂{2,3}

 . (42)

Proof of Corollary 5.2. For m = 3: A1 = ω̂{1,2} + ω̂{1,3}, B1 = ω̂{2,3}, and
(m−2) = 1. Applying Theorem 5.1: λ̂1 = (A1−B1)/(nt̄) = (ω̂{1,2}+ω̂{1,3}−
ω̂{2,3})/(nt̄). The formulas for λ̂2 and λ̂3 follow symmetrically.
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The log-likelihood for the three-component case is:

ℓ(λ|t̄, ω̂) = ω̂{1,2} ln(λ1+λ2)+ω̂{1,3} ln(λ1+λ3)+ω̂{2,3} ln(λ2+λ3)−nt̄(λ1+λ2+λ3)
(43)

The score equations are:

∇ℓ =


ω̂{1,2}
λ1+λ2

+
ω̂{1,3}
λ1+λ3

ω̂{1,2}
λ1+λ2

+
ω̂{2,3}
λ2+λ3

ω̂{1,3}
λ1+λ3

+
ω̂{2,3}
λ2+λ3

− nt̄

1
1
1

 = 0 (44)

Proof of Theorem 5.1 for m = 3. We demonstrate the result for the three-
component case; the extension to arbitrary m follows by analogous algebra.
The key insight is that pairwise subtraction of score equations yields propor-
tionality relations among candidate set sums.

Setting the score equations to zero:

ω̂{1,2}

λ1 + λ2

+
ω̂{1,3}

λ1 + λ3

= nt̄ (45)

ω̂{1,2}

λ1 + λ2

+
ω̂{2,3}

λ2 + λ3

= nt̄ (46)

ω̂{1,3}

λ1 + λ3

+
ω̂{2,3}

λ2 + λ3

= nt̄ (47)

Define the pairwise sums: σ1 = λ1+λ2, σ2 = λ1+λ3, σ3 = λ2+λ3. Then
the score equations become:

ω̂{1,2}

σ1

+
ω̂{1,3}

σ2

= nt̄ (48)

ω̂{1,2}

σ1

+
ω̂{2,3}

σ3

= nt̄ (49)

ω̂{1,3}

σ2

+
ω̂{2,3}

σ3

= nt̄ (50)

Subtracting equation (49) from (48):

ω̂{1,3}

σ2

−
ω̂{2,3}

σ3

= 0 ⇒ ω̂{1,3}σ3 = ω̂{2,3}σ2 (51)

Subtracting equation (50) from (48):

ω̂{1,2}

σ1

−
ω̂{2,3}

σ3

= 0 ⇒ ω̂{1,2}σ3 = ω̂{2,3}σ1 (52)
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Subtracting equation (50) from (49):

ω̂{1,2}

σ1

−
ω̂{1,3}

σ2

= 0 ⇒ ω̂{1,2}σ2 = ω̂{1,3}σ1 (53)

From equations (51), (52), (53), we can express σ2 and σ3 in terms of σ1:

σ2 =
ω̂{1,3}

ω̂{1,2}
σ1 (from (53)) (54)

σ3 =
ω̂{2,3}

ω̂{1,2}
σ1 (from (52)) (55)

Substituting into equation (48):

ω̂{1,2}

σ1

+
ω̂{1,3} · ω̂{1,2}

ω̂{1,3}σ1

= nt̄

ω̂{1,2} + ω̂{1,2}

σ1

= nt̄

σ1 =
2ω̂{1,2}

nt̄
(56)

Therefore:

σ1 =
2ω̂{1,2}

nt̄
, σ2 =

2ω̂{1,3}

nt̄
, σ3 =

2ω̂{2,3}

nt̄
(57)

Now we recover the individual λj from the system:

λ1 + λ2 = σ1 (58)
λ1 + λ3 = σ2 (59)
λ2 + λ3 = σ3 (60)

Solving: λ1 = (σ1 + σ2 − σ3)/2, λ2 = (σ1 − σ2 + σ3)/2, λ3 = (−σ1 + σ2 +
σ3)/2. Substituting the values of σi:

λ̂1 =
1

nt̄
(ω̂{1,2} + ω̂{1,3} − ω̂{2,3}) (61)

λ̂2 =
1

nt̄
(ω̂{1,2} − ω̂{1,3} + ω̂{2,3}) (62)

λ̂3 =
1

nt̄
(−ω̂{1,2} + ω̂{1,3} + ω̂{2,3}) (63)
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This completes the derivation of equation (42). The general case follows
the same pattern: pairwise subtraction of the m score equations reveals that
all (m−1)-wise sums are proportional to their candidate set counts, yielding
a linear system solvable in closed form.

Remark 5.3. The closed-form solution exists because the score equations
reduce to a linear system in the (m − 1)-wise sums. For m = 3, these
are pairwise sums σi = λj + λk. The same algebraic structure persists for
arbitrary m when w = m−1: pairwise subtraction of score equations reveals
that all (m− 1)-wise sums are proportional to their corresponding candidate
set counts. However, for w < m − 1, the score equations do not admit this
linearization and closed-form solutions generally do not exist.
Remark 5.4 (Boundary Estimates). The closed-form MLE is the uncon-
strained solution to the score equations. For extreme candidate set distribu-
tions (e.g., ω̂{2,3} > ω̂{1,2} + ω̂{1,3}), the formula may yield λ̂1 < 0, which is
outside the parameter space (0,∞)m.

Under the uniform masking model, P{λ̂j < 0} → 0 as n → ∞ when
λ⋆
j > 0. Negative estimates in finite samples suggest either:

1. Small sample size (insufficient averaging over candidate sets)

2. True parameter near zero (component rarely fails)

3. Potential model misspecification (uniform masking assumption vio-
lated)

When negative estimates occur, the constrained MLE (setting λj = 0
and re-solving for remaining components) also has closed form. For example,
with λ1 = 0:

λ̂2 =
ω̂{1,2}

(ω̂{1,2} + ω̂{1,3})t̄
, λ̂3 =

ω̂{1,3}

(ω̂{1,2} + ω̂{1,3})t̄
(64)

This corresponds to the two-component system where component 1 never
fails.

The Fisher information matrix is:

I(λ⋆|w = 2) =
1

2(λ⋆
1 + λ⋆

2 + λ⋆
3)


1

λ⋆
1+λ⋆

2
+ 1

λ⋆
1+λ⋆

3

1
λ⋆
1+λ⋆

2

1
λ⋆
1+λ⋆

3
1

λ⋆
1+λ⋆

2

1
λ⋆
1+λ⋆

2
+ 1

λ⋆
2+λ⋆

3

1
λ⋆
2+λ⋆

3
1

λ⋆
1+λ⋆

3

1
λ⋆
2+λ⋆

3

1
λ⋆
1+λ⋆

3
+ 1

λ⋆
2+λ⋆

3


(65)
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The inverse (asymptotic variance-covariance) is obtained by symbolic ma-
trix inversion:

I−1(λ⋆|w = 2) = (λ⋆
1 + λ⋆

2 + λ⋆
3)

λ⋆
1 + λ⋆

2 + λ⋆
3 −λ⋆

3 −λ⋆
2

−λ⋆
3 λ⋆

1 + λ⋆
2 + λ⋆

3 −λ⋆
1

−λ⋆
2 −λ⋆

1 λ⋆
1 + λ⋆

2 + λ⋆
3


(66)

This can be verified by direct multiplication: I · I−1 = I3.
The asymptotic mean squared error (trace of variance-covariance) is:

MSE(λ̂n) =
3(λ⋆

1 + λ⋆
2 + λ⋆

3)
2

n
(67)

5.2 Candidate Sets of Size One

When w = 1, each observation identifies the exact failed component. This
represents the no-masking case. The MLE is:

λ̂n =
1

nt̄

ω̂{1}
ω̂{2}
ω̂{3}

 (68)

The Fisher information matrix is diagonal:

I(λ⋆|w = 1) =
1

λ⋆
1 + λ⋆

2 + λ⋆
3

diag
(

1

λ⋆
1

,
1

λ⋆
2

,
1

λ⋆
3

)
(69)

The asymptotic variance-covariance is:

I−1(λ⋆|w = 1) = (λ⋆
1 + λ⋆

2 + λ⋆
3)diag(λ⋆

1, λ
⋆
2, λ

⋆
3) (70)

The MSE is:
MSE(λ̂n|w = 1) =

(λ⋆
1 + λ⋆

2 + λ⋆
3)

2

n
(71)

which is exactly 1/3 the MSE when w = 2, reflecting the additional
information from exact component identification.
Remark 5.5. The 1/3 MSE ratio holds regardless of the parameter values λ⋆

because both MSE expressions factor as (
∑

j λ
⋆
j)

2/n times a constant that
depends only on w, not on the individual λ⋆

j . This result is specific to the
three-component system; for general m and w, the MSE ratio depends on
both system dimension and masking cardinality.
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5.3 Numerical Validation

We validate the asymptotic theory through Monte Carlo simulation studies.
For each configuration, we generate r independent samples of size n, compute
the MLE for each sample, and compare the empirical covariance with the
theoretical asymptotic covariance.

5.3.1 Experimental Design

We consider multiple parameter configurations to assess robustness:

• Symmetric: λ⋆ = (3, 3, 3)⊤ (equal failure rates)

• Moderate imbalance: λ⋆ = (2, 3, 4)⊤ (1:1.5:2 ratio)

• Strong imbalance: λ⋆ = (1, 3, 5)⊤ (1:3:5 ratio)

For each configuration, we vary the sample size: n ∈ {100, 500, 1000, 5000}.
All simulations use r = 10,000 Monte Carlo replications and masking cardi-
nality w = 2.

5.3.2 Comparison Metrics

We quantify agreement between theoretical and empirical covariances using:

• Frobenius norm of difference: ∥Ĉov− 1
n
I−1∥F

• Maximum element-wise absolute difference: maxi,j |Ĉovij− 1
n
[I−1]ij|

• Relative Frobenius error: ∥Ĉov− 1
n
I−1∥F/∥ 1nI

−1∥F

5.3.3 Representative Results

Configuration 1: λ⋆ = (2, 3, 4)⊤, n = 1000, w = 2
The theoretical asymptotic variance-covariance matrix (evaluated at n =

1000) is:

1

1000
I−1(λ⋆|w = 2) =

 0.081 −0.036 −0.027
−0.036 0.081 −0.018
−0.027 −0.018 0.081

 (72)
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The empirical variance-covariance from r = 10,000 Monte Carlo replica-
tions is:

Ĉov =

 0.081 −0.037 −0.027
−0.037 0.082 −0.018
−0.027 −0.018 0.081

 (73)

Comparison metrics:

• Frobenius norm error: 0.0012

• Maximum element-wise error: 0.001

• Relative Frobenius error: 0.79%

Configuration 2: λ⋆ = (1, 3, 5)⊤, n = 5000, w = 2
The theoretical and empirical covariances agree to within 0.3% relative

Frobenius error, confirming that asymptotic approximations remain accurate
even under strong parameter imbalance when n is sufficiently large.

5.3.4 Finite-Sample Behavior

To assess convergence rates, we plot the relative Frobenius error as a function
of sample size for each parameter configuration. The error decreases approx-
imately as O(n−1/2), consistent with central limit theorem predictions.

For n = 100, the asymptotic approximation shows 3-5% relative error,
which decreases to less than 1% for n ≥ 1000. This suggests that asymptotic
confidence intervals are reliable for practical sample sizes exceeding n = 1000.

5.3.5 Implementation Note

Detailed simulation code, including data generation, MLE computation via
Corollary 5.2, and metric calculation, is available at https://github.com/
queelius/series_system_estimation. The simulations were implemented
in Python using NumPy for matrix operations and verified against indepen-
dent R implementations.

6 Conclusion
We have developed a comprehensive framework for statistical inference in
series systems with exponentially distributed component lifetimes when fail-
ure data is masked. The exponential case admits closed-form expressions for

23

https://github.com/queelius/series_system_estimation
https://github.com/queelius/series_system_estimation


the maximum likelihood estimator, Fisher information matrix, and sufficient
statistics.

The main practical insights are:

1. The information content of masked data is quantified by the Fisher
information matrix, which depends on the masking cardinality w

2. Minimal sufficient statistics are the mean system lifetime and candidate
set frequencies

3. For m-component systems with w = m− 1, a closed-form MLE exists
(the three-component case is developed in detail)

4. Asymptotic confidence intervals provide practical uncertainty quantifi-
cation

6.1 Model Assumptions and Limitations

This work makes two key assumptions that limit its direct applicability but
enable analytical tractability:

Uniform Masking Model: The assumption that non-failed compo-
nents are equally likely to be included in the candidate set (Definition 2.3)
is not realistic in most practical scenarios. Real diagnostic processes exhibit
systematic biases:

• Spatial clustering : Components in the same physical location or sub-
system are often grouped in candidate sets

• Accessibility bias : Easily inspected components may be overrepresented
in candidate sets

• Failure mode correlation: Components with similar failure signatures
are more likely to be co-nominated

• Cost-based selection: Expensive diagnostic tests may systematically
exclude certain components

When the uniform masking assumption is violated, the likelihood in Sec-
tion 3 is misspecified: the candidate-set term (7) is wrong. The resulting
MLE converges to a pseudo-true parameter that solves the expected score
under the incorrect masking model, which generally differs from the real
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parameter unless the non-uniform masking probabilities happen to be pro-
portional across components. Intuitively, non-uniform masking up- or down-
weights certain components in the log-likelihood, so the estimator absorbs
masking bias instead of recovering the true failure rates. The Fisher infor-
mation matrix derived here thus gives efficiency and variance only under
uniform masking; with non-uniform masking, both bias and variance depend
on the (unmodeled) masking mechanism.

Exponential Lifetimes: The constant-hazard assumption is appropri-
ate for:

• Random external shocks (e.g., power surges, environmental failures)

• Systems without aging or wear-out (e.g., early-life failures)

• Components with memoryless failure processes

The exponential assumption fails when:

• Components exhibit wear-out (increasing hazard rate)

• Infant mortality dominates (decreasing hazard rate)

• Failure mechanisms are time-dependent

For non-exponential distributions (Weibull, gamma, lognormal), the like-
lihood equations generally do not admit closed-form solutions, and the Fisher
information matrix must be computed numerically or via simulation.

Justification: Despite these limitations, we adopt these assumptions
because they enable complete analytical solutions. The resulting formulas
provide:

1. Baseline performance bounds for assessing more complex models

2. Insight into the fundamental information structure of masked data

3. Computational efficiency for quick parameter estimation

4. A reference model analogous to the role of the normal distribution in
statistics

Practitioners should validate the uniform masking assumption by exam-
ining diagnostic process documentation or performing goodness-of-fit tests
on candidate set patterns. When the assumption is questionable, simulation
studies can assess robustness or alternative models (e.g., component-specific
masking probabilities) should be considered.
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6.2 Extensions

Several extensions would broaden the applicability of this framework:

1. Non-uniform masking models: Relax the uniform masking assump-
tion to allow component-specific inclusion probabilities αj or condi-
tional dependence structures. For example:

• Accessibility-weighted masking: P{j ∈ C|K = k, j ̸= k} = αj

depends on component accessibility

• Cluster-based masking: Components within the same subsystem
have correlated inclusion probabilities

• Parametric masking models with estimable diagnostic parameters

Such models sacrifice analytical tractability but more accurately reflect
real diagnostic processes. The uniform masking results provide baseline
comparisons and limiting cases.

2. Variable masking cardinality: Remark 4.6 provides the optimal
combination formula when w varies across observations. Further ex-
tensions could model w as random, depending on diagnostic difficulty
or component type

3. Non-exponential lifetime distributions: Extend to Weibull (aging/wear-
out), gamma (multi-stage failures), or lognormal (time-dependent haz-
ards) distributions. Numerical methods will be required, but asymp-
totic theory remains applicable.

4. Covariate effects: Incorporate covariate information (operating con-
ditions, environmental factors) via proportional hazards models or ac-
celerated failure time frameworks

5. Bayesian approaches: When prior information about component re-
liabilities is available, derive posterior distributions for λ and posterior
predictive distributions for future failures

6. Optimal diagnostic design: Given costs of diagnostic tests and ben-
efits of precise failure identification, design inspection strategies that
optimize the information-cost tradeoff
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The uniform masking, exponential lifetime framework provides a founda-
tion for understanding masked system data. While restrictive, the analytical
tractability enables clear insight into the information structure that extends
conceptually to more complex settings. The closed-form results serve as
benchmarks for evaluating numerical methods and assessing the efficiency
loss from model misspecification.

A Numerical Solution Methods
For cases without closed-form solutions, the MLE must be computed numer-
ically. The Newton-Raphson algorithm is effective:
Algorithm 1: Newton-Raphson for Exponential MLE
Input: Initial guess λ(0), tolerance ϵ
Output: MLE λ̂n

1 k ← 0;
2 repeat
3 Compute score s(k) = ∇ℓ(λ(k)|Mn);
4 Compute Hessian H(k) = ∇2ℓ(λ(k)|Mn);
5 Update λ(k+1) = λ(k) − [H(k)]−1s(k);
6 k ← k + 1;
7 until ∥λ(k+1) − λ(k)∥ < ϵ;
8 return λ(k)

The Hessian for the exponential log-likelihood is:

[
∇2ℓ(λ|Mn)

]
jk

= −
n∑

i=1

1Ci×Ci
(j, k)(∑

p∈Ci
λp

)2 (74)

Convergence is typically rapid when initialized at a reasonable starting
point such as λ(0) = (1/t̄, . . . , 1/t̄).
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