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Abstract
We define a random approximate set model and the probability space that follows. A random approximate set is a

probabilistic set generated to approximate another set of objective interest. We derive several properties that follow from this
definition, such as the expected precision in information retrieval. Finally, we demonstrate an application of approximate
sets, approximate Encrypted Search with queries as a Boolean algebra, which generates random approximate result sets.
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1 Introduction
An approximate set is a set that approximates another set of objective interest. It is approximate because with respect to
the objective set, there are two types of errors, false positives and false negatives. The Bloom filter is a popular example of a
data structure that models positive random approximate sets with false positives due to rate distortion.

In section 2, we define the algebra of sets.
In section 3, we provide a formal definition of the random approximate set model, in which the false positive and false

negative rates are expectations. We describe the axioms of the random approximate set model such that, if satisfied, also
satisfy the axioms of the approximate algebra of sets. We further derive the probability distribution of random approximate
sets entailed by the axioms.

In section 4, we derive the rate-distortion random variables that are fundamental to the approximate set model, such as
the false positive rate.

In ??, we provide a detailed treatment on distributions that are induced by functions that depend on random approximate
sets, e.g., in section 5.1 we derive the probability distribution of random approximate sets that are generated from arbitrary
set-theoretic operations on random approximate sets and in section 6 we derive several well-known binary classification
performance measures of random approximate sets as a function of their error rates, such as positive predictive value.

In section 7, we provide the probabilistic model for random approximate sets with uncertain rate distortions, such as an
uncertain false positive rate.

In section 8, we provide a treatment on the random approximate set model as an abstract data type and show how that,
if the generative algorithm of an approximate set model is deterministic, the random approximate set model quantifies our
ignorance or uncertainty.

Finally, in section 9, we consider Encrypted Search with secure indexes based on random approximate sets. To prove
various properties of this model, such as expected precision, we only need to show that the result sets are approximate sets of
the objective results and all the results immediately follow.

2 Algebra of sets
A set is an unordered collection of distinct elements. If we know the elements in a set, we may denote the set by these
elements, e.g., {a, c, b} denotes a set whose members are exactly a, b, and c.

Two sets of particular importance are the empty set, denoted by ∅, which has no members, and the universal set, in which
every element of interest is a member.

A finite set has a finite number of elements. For example, {1, 3, 5} is a finite set with three elements. When sets A and B
are isomorphic, denoted by A ∼= B, they can be put into a one-to-one correspondence (bijection), e.g., {b, a, c} ∼= {1, 2, 3}.

The cardinality of a finite set A is the number of elements in the set, denoted by |A|, e.g., |{1, 3, 5}| = 3. A countably
infinite set is isomorphic to the set of natural numbers N := {1, 2, 3, 4, 5, . . .}.

Given two elements a and b, an ordered pair of a then b is denoted by 〈a , b〉, where 〈a , b〉 = 〈c , d〉 if and only if a = c
and b = d. Ordered pairs are non-commutative and non-associative, i.e., 〈a , b〉 6= 〈b , a〉 if a 6= b and 〈a , 〈b , c〉〉 6= 〈〈b , a〉 , c〉.

Related to the ordered pair is the Cartesian product.

Definition 2.1. The set X × Y :=
{
〈x , y〉 : x ∈ X ∧ y ∈ Y

}
is the Cartesian product of sets X and Y.

By the non-commutative and non-associative property of ordered pairs, the Cartesian product is non-commutative and
non-associative. However, they are isomorphic, i.e., X × Y ∼= Y × X .

A tuple is a generalization of order pairs which can consist of an arbitrary number of elements, e.g., 〈x1, x2, . . . , xn〉.

Definition 2.2 (n-fold Cartesian product). The n-ary Cartesian product of sets X1, . . . ,Xn, is given by X1 × · · · × Xn ={
〈x1, . . . , xn〉 : x1 ∈ X1 ∧ · · · ∧ xn ∈ Xn

}
.

Note that X1 × X2 × X3 ∼= X1 × (X2 ×X3) ∼= (X1 ×X2) × X3, thus we may implicitly convert between them without
ambiguity.

If each set in the n-ary Cartesian product is the same, the power notation may be used, e.g., X 3 := X ×X ×X . As special
cases, X 0 := {∅} and X 1 := X .

A binary relation over sets A and B is any subset of A × B. A fundamental relation is the member-of relation, where
x ∈ A denotes that an object x is a member of a set A. A set A is a subset of a set B if every member of A is a member B,
denoted by A ⊆ B. The subset relation forms a partial order, i.e., if A ⊆ B and B ⊆ C then A ⊆ C and if A ⊆ B and B ⊆ A
then A and B are equal, denoted by A = B.

Definition 2.3. Set builder notation

Definition 2.4. A function of type X 7→ Y is a binary relation on X × Y with the constraint that each x ∈ X is paired with
exactly one y ∈ Y.
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A function of type X 7→ Y has a domain X and a codomain Y. Since every x ∈ X , given a pair 〈x , y〉 ∈ f, y may also be
denoted by f(x).

The power set of a set A, denoted by 2A, is the set of sets that contains all of the possible subsets of A, e.g., 2{a,b} ={
∅, {a}, {b}, {a, b}

}
.

A predicate is a function that maps elements in its domain to true (denoted by 1) or false (denoted by 0). A predicate
function of particular importance is the indicator function

1A : X 7→ {0, 1} (2.1)

defined as

1A(x) :=
{

0 if x /∈ A ,
1 if x ∈ A .

(2.2)

The indicator function admits the construction of predicates for any relation, e.g., a binary predicate P for a binary
relation R ⊆ A × B is defined as P(x1, x2) := 1R(〈x1 , x2〉). Denoting the universal set by X , all the relations mentioned
previously are binary predicates, such as ∈ : X × 2X 7→ {0, 1} and ⊆ : 2X × 2X 7→ {0, 1}.

Some important operations on sets are described next. The union operator, ∪ : 2X × 2X 7→ 2X , is defined as

A ∪ B := {x ∈ X | x ∈ A ∨ x ∈ B } (2.3)

where ∨ is the logical-connective or. The intersection operator, ∩ : 2X × 2X 7→ 2X , is defined as

A ∩ B := {x ∈ X | x ∈ A ∧ x ∈ B } (2.4)

where ∧ is the logical-connective and. If A ∩ B = ∅, then we say A and B are disjoint sets.
The relative complement (set-difference) operator, r : 2X × 2X 7→ 2X , is defined as

Ar B := {x ∈ X | x ∈ A ∧ x /∈ B } . (2.5)

The relative complement X rA is denoted by A and is called the complement of A.

2.1 Boolean algebras
An algebra denotes a mathematical structure in which a certain set of axioms hold. A Boolean algebra is given by the following
definition.
Definition 2.5. A Boolean algebra is a six-tuple (A,∧,∨,¬, 0, 1) where A is a set, ∧ is the binary meet operation, ∨ is the
binary join operation, ¬ is the unary complement operation, 0 is the bottom element, and 1 is the top element such that
∀a, b, c ∈ A the following axioms hold:

1. Associativity: a ∨ (b ∨ c) = (a ∨ b) ∨ c and a ∧ (b ∧ c) = (a ∧ b) ∧ c.

2. Commutativity: a ∨ b = b ∨ a and a ∧ b = b ∧ a.

3. Identity: a ∨ 0 = a and a ∧ 1 = a.

4. Distributivity: a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c) and a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c).

5. Complementation: a ∨ ¬a = 1 and a ∧ ¬a = 0.
Every valid proposition in a Boolean algebra is derivable from the axioms in definition 2.5. A particularly useful result is

De Morgan’s laws,
a ∨ b = ¬(¬a ∧ ¬b) (2.6)

and
a ∧ b = ¬(¬a ∨ ¬b) . (2.7)

Postulate 2.1. Given the universal set U and a set Σ ⊆ 2U that is closed under unions, intersections, and complements,
(Σ,∪,∩, ,∅,U) is a Boolean algebra.

Trivially, Σ = 2U forms a Boolean algebra, but later we demonstrate that implementations of the random approximate set
model may form a Boolean algebra over some closed subset Σ ⊂ 2U .

The algebra of bit-wise operations on vectors of u bits is given by ({0, 1}u,∧,∨,¬,0,1) where ∧ is bit-wise and, ∨ is
bit-wise or, ¬ is bit-wise negation, 0 is vector of all zeros, and 1 is vector of all ones.

A bijection between the algebra of sets and the algebra of bit vectors is given by the following definition.
Definition 2.6. Suppose there is some total order on U , u = |U |, such that the j-th ranked element may be denoted by
x(j). A bijection between the Boolean algebras

(
2U ,∩,∪, ,∅,U

)
and ({0, 1}u,∧,∨,¬,0,1) is given by mapping X ∈ 2U to

a ∈ {0, 1}u where aj = 1X (x(j)). Additionally, ∨ ↔ ∪, ∧ ↔ ∩, ¬ ↔ , 0↔ ∅, and 1↔ U .
This bijection allows us to use either representation interchangeably.
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3 Random approximate set model
The concept of a random approximate set depends upon the concept of an approximate set.

Given an objective set S, any element that is a member of S is denoted a positive of S and any element that is not a
member of S is denoted a negative of S.

A set that is used as an approximation of S may be denoted by S±. If the only information we have about S is given by
S±, then we may perform membership tests on S± to predict the members (or non-members) of S.

There are two ways a binary prediction can be false.

1. A false positive occurs if a negative of the objective set is predicted to be a positive. False positives are also known as
type I errors. The complement of false positives are true negatives.

2. A false negative occurs if a positive of the objective set is predicted to be a negative. False negatives are also known as
type II errors. The complement of false negatives are true positives.

Suppose we have an objective set S and an approximation S±. If we denote the set of false positives by Fp, true positives
by Tp, false negatives by Fn, and true negatives by Tn, then the objective set S is equal to Fn ∪ Tp and the approximate set
S± is equal to Tp ∪ Fp. See fig. 1 for an illustration.

Figure 1: An approximate set S± of an objective set S

S = Tp ∪ Fn

S± = Tp ∪ Fp

Fp

Fn
TpTn

If we only have access to the approximation S±, we cannot partition the universe into the sets Fp, Tp, Fn, and Tn as
demonstrated in fig. 1. However, we can quantify the degree of uncertainty about the elements that are predicted to be
positive or negative.

The false positive and true negative rates are given by the following.

Definition 3.1. The false positive rate is the proportion of predictions that are false positives as given by

ε̂ = fp
fp + tn

, (3.1)

where fp is the number of false positives and tn is the number of true negatives. In a complementary manner, the true
negative rate is η̂ = 1− ε̂.

The true positive and false negative rates are given by the following.

Definition 3.2. The true positive rate is the proportion of predictions that are true positives as given by

τ̂ = tp
tp + fn

, (3.2)
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where fn is the number of false negatives and tp is the number of true positives. In a complementary manner, the false
negative rate is ω̂ = 1− τ̂ .

The probabilities of the four possible predictive outcomes are given by table 1.

positive negative
predict positive τ̂ = 1− ω̂ ε̂ = 1− η̂
predict negative ω̂ = 1− τ̂ η̂ = 1− ε̂

Table 1: The 2× 2 contingency table of outcomes for approximate sets.

In the random approximate set model, we do not describe any particular approximation, but rather we describe the
statistical properties of processes that generate approximations.

The random false positive rate E and false negative rate W have supports in the Borel set of [0, 1].
The zero-th order generative model for sets is not generally known, but we denote the zero-th order model by R. We

denote the first-order random approximate set generative model by R±. The joint distribution of R±, E , W, and R given a
unviersal set U has a probability density

fR±,E,W,R(Y, ε, ω,X | U) . (3.3)

By the axioms of probability theory, this may be decomposed into

fR±,E,W,R(Y, ε, ω,X | U) = fR±|E,W,R
(
Y
∣∣ ε, ω,X|U) fE,W|R(ε, ω | X ) fR(X | U) . (3.4)

We typically omit the explicit reference to U , since it may usually be understood as implicit to the model.
The object of central interest is the distribution of R± given R. The conditional distribution of R± given R = X is denote

by X±. By the axioms of probability,

fX±,E,W(Y, ε, ω) = fX±|E,W(Y | ε, ω) fE,W|R(ε, ω | X ) . (3.5)

The random false positive and false negative rates conditioned on R = X are respectively given by

E = 1
|X |

∑
x∈X

1X±(x) (3.6)

and
W = 1

|X |

∑
x∈X

1X±(x) . (3.7)

A± conditioned on E = a and W = b is a random approximate set with the indicated false positive and false negative
rates. If the rates happen to pick out a specific set in the support, then the result is a degenerate distribution, e.g., A± given
E = 0 and W = 0 is degenerate where all probability mass is assigned to A.

We denote the distributions of X± given E[E ] = ε and X± given E[W] = ω respectively by X−ε and Xω+ . An object of
central interest is the distribution of X± given E[E ] = ε and E[W] = ω, denoted by

Xωε . (3.8)

If we sample from Aωε , some set Y ∈ 2U with false positive rate a and false negative rate b will be realized with probability
fAωε |E,W(Y | a, b). However, as the number of samples goes to infinity, the mean false positive and false negative rates go to ε
and ω respectively.

A random positive approximate set is a special case given by the following definition.

Definition 3.3. A random approximate set Aε− is a random positive approximate set denoted by A+.

By this definition, any instance of A+ is a superset of A.
As shown in ??, positive approximate sets are closed under unions and intersections but not complements. We introduce

the negative approximate set as a natural consequence.

Definition 3.4. A random approximate set A+
0 is a random negative approximate set denoted by A−.

By this definition, any instance of A− is a subset of A.
Negative approximate sets are closed under unions and intersections but not complements. The complement of a random

positive (negative) approximate set is a random negative (positive) approximate set.
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3.1 First-order model
The first-order random approximate set model makes the following assumption about the joint distribution of E , W, and R.

Axiom 1. The random variables E and W are conditionally independent given R.

By axiom 1 and by the axioms of probability,

fX±,E,W(Y, ε, ω) = fX±|E,W(Y | ε, ω) fE|R(ε | X ) fW|R(ω | X ) . (3.9)

The following axioms complete the probabilistic model for first-order random approximate sets.

Axiom 2. The outcome of a membership test on any element in the negative set is an independent and identically distributed
Bernoulli trial with a mean ε,

P
[
1Aετ (x)

∣∣ ¬1A(x)
]

= ε . (3.10)

Axiom 3. The outcome of a membership test on any element in the negative set is an independent and identically distributed
Bernoulli trial with a mean τ ,

P
[
1Aετ (x)

∣∣ 1A(x)
]

= τ . (3.11)

It may not be possible, desirable, or practical to observe these rates, e.g., the objective set may not be knowable from the
given information. In section 4 we derive the probability distributions for characteristics like the false positive rate. Thus,
for instance, we may provide a confidence interval which contains the false positive rate with some probability α which is a
function of parameters like the expected false positive rate ε.

Every statistical property of the random approximate set model (first-order and higher-order) is entailed by axioms 2
and 3. Furthermore, these assumptions generally hold in practice, e.g., the Bloom filter[? ] and Perfect hash filter[? ] are two
separate implementations1 of the random positive approximate set in which these assumptions hold.

Suppose the first-order random approximate sets are over the universal set U . Then, over the Boolean algebra (2U ,∪,∩, ,∅,U),
the approximate sets formed are no longer first-order approximations. In ??, we describe such higher-order models.

3.1.1 Probability space

Suppose the universal set is U and we have some process that generates approximations of some objective set A that is
compatible with the axioms of the random approximate set model.

The process generates subsets of U , or alternatively, the sample space is Σ = 2U . A primary objective in probability
modeling is assigning probabilities to events. Suppose we have some probability function P: Σ 7→ [0, 1]. The probability of
some event A ∈ Σ is denoted by P[A].

These are the elementary events of the probability space. The random approximate set model given R = Y is given by
the probability space (

Ω = 2U , 2Ω,P
)
, (3.12)

where Ω is the sample space, 2Ω is the set of all events, and P: 2Ω 7→ [0, 1] is the probability set function.
Consider an objective set A and a random approximate set and suppose we are uncertain about which elements are their

respective members. We model the uncertainty of the elements of A by the Boolean random vector A = 〈A1, . . . ,Au〉 where
Aj = 1A

(
x(j)

)
for j = 1, . . . , u. Similarly, we model the uncertainty of the elements of A± by Aε

τ = 〈A±1 , . . . ,A±u 〉.
The joint probability that Aε

τ = x and A = y is denoted by P[Aε
τ = x,A = y]. By the axioms of probability, the joint

probability may be rewritten as
P[Aε

τ = x,A = y] = P[Aε
τ = x |A = y] P[A = y] . (3.13)

By axioms 2 and 3, A±j is only dependent on Aj for j = 1, . . . , u and thus by the axioms of probability

P[Aε
τ = x,A = y] = P[A = y]

u∏
j=1

P
[
A±j = xj

∣∣∣Aj = yj

]
. (3.14)

If it is given that Aε
τ = y, i.e., the elements in the objective set are known, by the axioms of probability the conditional

probability is

P[Aε
τ = x |A = y] =

u∏
j=1

P
[
A±j = xj

∣∣∣Aj = yj

]
(3.15)

where ε = P
[
A±j = 1

∣∣∣Aj = 0
]
and τ = P

[
A±j = 1

∣∣∣Aj = 1
]
.

1There may be a difference in that the algorithm may be deterministic; we address this point in ??.
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The relative frequency of any event x in {0, 1}u converges to P
[
X± = x

∣∣∣ y±
]
as the number of times the random

approximate set of y± is generated goes to infinity.
Consider the following example.

Example 1 Suppose the universal set is {x1, x2} and consider the distribution of the first-order random approximate set
{x1}ωε . The probability mass function p{x1}ωε is given by

p{x1}τε (X ) =


ω(1− ε) X = ∅ ,

ωε X = {x2} ,
(1− ω)(1− ε) X = {x1} ,
(1− ω)ε X = {x1, x2} .

(a)

3.2 Higher-order model
Composing random approximate sets over the Boolean algebra (Σ,∪,∩, ,∅,U), where Σ ⊆ 2U since, for instance, if a
deterministic algorithm implements the model some elements in 2U may not be reachable. As a result, to satisfy the identity
and complementation axioms required by Boolean algebras, we make ∅ and U available in the model as special cases.

Remark. Alternatively, these axioms may be satisfied by making the empty set and the universal set degenerate cases, i.e.,
P
[
∅± = ∅

]
= 1 and P

[
U± = U

]
= 1. 4

Furthermore, we may replace any of the operators in the Boolean algebra with random approximations that model the noisy
or rate-distorted channel previously described, i.e., these operators may themselves be constructors for random approximate
sets, e.g., A∪τε B ∼ (A ∪ B)ετ where ∪τε maps negatives to positives with probability ε and maps positives to negatives with
probability τ .

Given two sets X and Y, the set of all possible functions from domain X to codomain Y is denoted by X 7→ Y (or XY
since there are a total of |X ||Y| functions in the set).2

A particular function in the set X 7→ Y may be given a label f and we denote that it is a function in this set with the
notation f : X 7→ Y.

A natural mapping is provided by the identity function id : 2X 7→ 2X , which is defined as

id(A) := A . (3.16)

However, suppose we only have an approximation of the identity function, denoted by idτε , such that idτε (A) ∼ Aτε . Then idτε
generates sets consistent with the random approximate set model.

If we compose random approximate sets, then we have higher-order random approximate sets.

Theorem 3.1. The composition of random approximate identity functions idτε ◦ idτ ’
ε’ generates random approximate sets with

a true positive rate ττ ′ + ωε′ and false positive rate ετ ′ + ηε′.

Definition 3.5. The iterated function fk is defined as k compositions of f where f0 denotes the (non-random) identity
function.

The composition (idτε )k generates k-th order random approximate sets where the zero-th order random approximation is
the identity, i.e.,

(
id±
)0

= id.
The function being approximately may take other forms, like set-complementation or set-union, e.g., let ∪ : 2X × 2X 7→ 2X

be approximated by ∪τε : 2X × 2X 7→ 2X . Then, A∪τε B is a random approximate set of A ∪ B as before. However, ∪τ ’
ε’ ◦ idτε

generates second-order random approximate sets.
Suppose we have an iterable set that is the output of some random approximation of some objective set of interest. We

may wish to apply a more space-efficient data structure for random approximate sets, such as a Bloom filter[? ]. In this case,
the result is a second-order random approximate set; that is, a random approximate set of a random approximate set.

Theorem 3.2. Given a random approximate set Aτ1
ε1
, a random approximation of Aτ1

ε1
with a false positive rate ε2 and true

positive rate τ2 is a second-order random approximate set of A with a false positive rate ε = ε1τ2 + η1ε2 and true positive
rate τ = τ1τ2 + ω1ε2, denoted by Aσ2(τ, ε).

This result may be recursively applied to derive arbitrary k-th order random approximate sets as given by

Aσ
k

=
(
Aσ

k−1
)σ

(3.17)

where the zero-th order Aσ0 = A.
2The domain X may be a Cartesian product of other sets, e.g., X1 ×X2 7→ Y denotes a set of binary functions.
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In an algebra of set (2U ,∩,∪, ,U ,∅), we may compose sets to form new sets. When these sets model random approximate
sets, then their compositions model higher-order random approximate sets, e.g., Aτ1

ε1
∪ Bτ2

ε2
models a higher-order random

approximate set which does not obey the model described in ??; rather, it partitions the negative set such that each partition
may have a different false positive rate and similarly for the positive set.

TODO: not that while each partition may have a different false positive rate, it obeys the first-order model of that
partition. this is the basis of the zeroth order -> first order -> higher order model, where higher orders (after first) are a
result of the Boolean algebra, i.e., unions, intersections, complements, etc. TODO: let’s pull the set-complement into the first
order model, since if given a first order RAS, then its complement is also a first-order RAS. TODO: get some venn diagrams
in this. have one for the first-order model, now let’s extend it to, say, a union of two approximate sets.
∪±Aτ1

ε1
][Bτ2

ε2
]

This contrasts with (A ∪ B)τε , in which the false positive rate for the negative elements are uniformly distributed and
likewise for the positive elements. We call these random approximate sets first-order approximations. For completeness, the
zeroth-order are the objective sets, e.g., the zeroth-order approximation of A∪B is A∪B. The complexity of the probabilistic
model increases as the order increases.

If we have a data structure that models random approximate sets and if we transmit an objective set over a noisy channel in
which positives become negatives with some probability and likewise for negatives, then any constructed random approximate
set will be a higher-order random approximate set.

TODO: probabilistic model of unions and complements of random approximate sets. Grab the stuff from the parameter
distribution section. It just partitions the negative and positive sets so that the predictive test for negatives are no longer
uniformly distributed and likewise for positives.

4 Probability distributions of parameters for first-order approximations
The (first-order) random approximate sets are parameterized by the expected rates of two types of error, false negative and
false positive rates. In this section, we derive the distribution for these rates.

A random variable W: Σ 7→ Y is a function that maps outcomes in the σ-algebra to a measurable space Y. The probability
that W realizes some measureable subset Z ⊆ Y is given by P[W ∈ S] = P

[
{w
∣∣W(w) ∈ Z}

]
.

The number of false positives is a random variable given by the following theorem..
Theorem 4.1. Given n negatives, the number of false positives in an approximate set with a false positive rate ε is a random
variable denoted by FPn with a distribution given by

FPn ∼ BIN(n, ε) . (4.1)

Proof. By axiom 2, the uncertain outcome that a negative element tests as positive is a Bernoulli trial with a mean ε. Since
there are n such independent and identically distributed trials, the number of false positives is binomially distributed with a
mean nε.

The false positive rate ε is an expectation. However, the false positive rate of a random approximate set S± parameterized
by ε is uncertain.
Theorem 4.2. The false positive rate is the random variable, denoted by En, defined as

En = FPn
n

, (4.2)

with an expectation ε, variance ε(1− ε)/n, and probability mass function

fEn(ε̂ | ε) = fFPn(ε̂n | ε) . (4.3)

over the support { jn ∈ Q | j ∈ {0, . . . , n} }.
Proof. By definition 3.1, the false positive rate is given by the ratio of the number of false positives to the total number of
negatives. By theorem 4.1, given that there are n negatives, the number of false positives is a random variable denoted by
FPn. Therefore, the false positive rate, as a function of FPn, is the random variable FPn

n . The expected false positive rate is

E
[

FPn
n

]
= 1
n

E[FPn] = ε (a)

and its variance is
V
[

FPn
n

]
= 1
n2 V[FPn] = ε(1− ε)

n
. (b)

Finally, En = FPn/n is a scaled transformation of the binomial distribution. Thus, since FPn = nEn,

fEn(ε̂n | ε) = fFPn(nε̂) . (c)
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The following corollary immediately follows.

Corollary 4.2.1. Given n negatives, the number of true negatives in a random approximate set with a false positive rate ε
is a random variable denoted by TNn with a distribution given by

TNn = n− FPn ∼ BIN(n, 1− ε) . (4.4)

By definition, the true negative rate Nn = TNn/n = 1− En.

By theorem 4.2, the more negatives there are, the lower the variance.

Corollary 4.2.2. Given countably infinite negatives, a random approximate set with a false positive rate ε is certain to
obtain ε.

Proof. We know that the expected value for each of the random variables in this sequence is ε and the variance is ε(1− ε)/n.
Immediately, we see that as n increases, the distribution of false positives must become more concentrated around ε. As
n→∞, the variance goes to 0, i.e., the distribution becomes degenerate with all of the probability mass assigned to the mean.
See section A for a more rigorous proof.

The fewer negatives, the greater the variance. The maximum possible variance, when n = 1 and ε = 0.5, is 0.25, may be
used as the most pessimistic estimate given a situation where we have no information about the false positive rate ε and the
cardinality of the universal set.

A degenerate case is given by letting n = 0, corresponding to a random approximate set of the universal set which has no
negative elements that can be tested. Respectively, only random negative or positive approximate sets may be generated for
the universal set or empty set.

The number of false negatives is given by the following theorem.

Theorem 4.3. Given p positives, the uncertain number of false negatives in random approximate sets with a false negative
rate ω is modeled as a binomial distributed random variable denoted by FPp,

FNp ∼ BIN(p, ω) . (4.5)

Proof. By axiom 2, the probability that a positive element tests as negative is ω. Thus, each test is a Bernoulli trial. Since
there are p = |S| such independent and identically distributed trials with a probability of “success” ω, the number of false
negatives is binomially distributed.

The false negative rate ω is an expectation. However, the false false negative rate of an approximate set S± parameterized
by ω is uncertain.

Theorem 4.4. The false negative rate realizes an uncertain value as given by

Wp = FNp

p
(4.6)

with a support { j/n | j = 0, . . . , p }, an expectation ω, and a variance ω(1− ω)/p.

The proof follows the same logic as the proof for theorem 4.2, except we replace negatives with positives.
In section 5.1, we consider set-theoretic operations like complements. The complement operator applied to an approximate

set of a set with countably infinite negatives is an approximate set of a set with countably infinite positives.

Corollary 4.4.1. An approximate set of a set with countably infinite positives has a false negative rate that is certain to
obtain ω.

The proof follows the same logic as the proof for corollary 4.2.2, except we replace negatives with positives.
The number of true positives is given by the following corollary.

Corollary 4.4.2. Given p positives, the number of true positives in an approximate set with a false negative rate ω is a
random variable denoted by TPp with a distribution given by

TPp ∼ BIN(p, τ) . (4.7)

By definition, the true positive rate is given by Tp = 1−Wp.
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The proof follows the same logic as the proof for theorem 4.2.
Many other properties of random approximate sets follow from these distributions. For instance,

|Aτε | = TPp + FPn , (4.8)

which has an expectation of nε + pτ and variance of nε(1 − ε) + pτ(1 − τ), which is the generalization of the binomial
distribution known as the Poisson binomial distribution.

If we do not know p, the cardinality A, but have observed A± = B, then B has a cardinality that tends to be centered
around uε+ p(τ − ε) where u is the cardinality of the universal set. Solving for p yields a method of moments estimator

p̂ = |B| − uε
τ − ε

. (4.9)

If the universal set U is infinite, then this estimator is undefined.

4.1 Asymptotic limits
The false positive and false negative rates are a function of the cardinality of the objective and universal sets. The limiting
distributions for the false positive and true positive rates are given by the following theorems.

Theorem 4.5. By theorem 4.2, the uncertain false positive rate En converges in distribution to the normal distribution with
a mean ε and a variance ε(1− ε)/n, written

En
d−→ N

(
ε, ε(1− ε)/n

)
. (4.10)

Similarly, by ??, the uncertain true positive rate of an approximate set of p positives, denoted by Tp, converges in distribution
to the normal distribution with a mean τ and a variance τ(1− τ)/p, written

Tp
d−→ N

(
τ, τ(1− τ)/p

)
. (4.11)

Proof. By ?? in the proof of corollary 4.2.2, given n negatives, the false positive rate is

En = X1

n
+ · · ·+ Xn

n
, (a)

where X1, . . . ,Xn are n independent Bernoulli trials each with a mean ε and a variance ε(1− ε). Therefore, by the central
limit theorem, En converges in distribution to a normal distribution with a mean ε and a variance ε(1− ε)/n. The proof for
the true positive rate follows the same logic.

By eqs. (4.10) and (4.11),

Nn
d−→ N

(
1− ε, ε(1− ε)/n

)
and Wn

d−→ N
(
1− τ, τ(1− τ)/p

)
. (4.12)

The random approximate set model is the maximum entropy probability distribution for the indicated false positive and
true positive rates, e.g., any estimated α-confidence intervals are the largest intervals possible for the indicated α and therefore
represent a worst-case uncertainty.

If we generate an approximate set, the uncertain false positive and true positive rates realize certain values, i.e., En = ε̂
and Tp = τ̂ . If the sample space is countably infinite, the distribution is degenerate, e.g., En = ε with probability 1. However,
for finite sample spaces, the outcomes are uncertain. If these outcomes can be observed, e.g., it is not too costly to compute,
the exact values ε̂ and τ̂ may be recorded. If these outcomes cannot be observed, e.g., it is too costly to compute or the
information to compute ε̂ or τ̂ is not available, we may use the probabilistic model to inform us about the distribution of
false positive rates.

Confidence intervals that contain the true false positive rate ε̂ and the true true positive rate τ̂ are given by the following
corollaries.

Theorem 4.6. Given a random approximate set parameterized by ε and τ , asymptotic α · 100% confidence intervals for the
false positive rate and true positive rate are respectively

ε±
√
ε(1− ε)

n
Φ−1(α/2) (4.13)

and

τ ±

√
τ(1− τ)

p
Φ−1(α/2) , (4.14)

where Φ−1 : [0, 1] 7→ R is the inverse cumulative distribution function of the standard normal.

As a worst-case (maximum uncertainty), we may let n = p = 1 in eqs. (4.13) and (4.14).
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5 Probability distributions of parameters for higher-order approximations
The false negative rate is a random variable that is a mixture? of binomially distributed random variables and likewise
for the false positive rate. We characterize their error rates by their expected values and variance and show their normal
approximation when the sampling distribution of these rates are important.

5.1 Compositions of random approximate sets
The union of two first-order random approximate sets is given by the following theorem.

Theorem 5.1. The union of first-order random approximate sets Aε1 and Bε2 is up to a third-order random approximate
set with a random error rate given by

∆ =
3∑
i=1

αjXj (5.1)

with an expectation
ε = α1(1− ε1)ε2 + α2(1− ε2)ε1 + (1− α1 − α2 − α3)ε1ε2 , (5.2)

a false negative rate
ω = ε1ε2 (5.3)

and a false positive rate
ε = ε1ε2 , (5.4)

where α1 := |ArB|
|U| , α2 := |BrA|

|U| , and α3 := |A∩B|
|U| .

The set of n-arity operations on set X is given by Xn 7→ X . In this section, we consider binary operations on 2U , like
∪ : 2U × 2U 7→ 2U , and the result of providing random approximate sets as input.

Given the Boolean algebra
(

2U ,∩,∪, ,∅,U
)
we derive the random approximate sets that result from the union (join) or

complement of random approximate sets. Since unions and complements form a complete basis for Boolean algebras, we may
express other Boolean operations as a composition of these two operations, e.g., A± r B± = A± ∪ B±.

The random approximate sets that result from union operations on random approximate sets are given by the following
theorems.

Theorem 5.2. The union of two random approximate sets respectively with true negative rates η1 and η2 is a random
approximate set with a true negative rate η1η2.

Proof. Suppose we have two sets A and B with false positive rates ε1 and ε2. The false positive rate ε of A± ∪ B± is a
probability conditioned on a negative for A ∪ B being a positive for A± ∪ B±.

Switching to the Boolean vector representation, suppose we randomly select an element from the universe, denoted by xj ,
such that ¬Aj ∨ ¬Bj is true.

The expected false positive rate of the union is defined by the probability

ε = P
[
A± ∪ B±

∣∣B1 ∩B2
]
. (a)

By DeMorgan’s law, the union of sets is the complement of the intersection of their complements. That is,

A1 ∪A2 ≡
(
A′1 ∩A′2

)′ (b)

and thus
ε = P

[(
A′1 ∩A′2

)′ ∣∣∣B1 ∩B2

]
. (c)

Since either an event or the complement of the event is certain to occur, P[E] + P
[
E′
]

= 1, the above equation may be
rewritten as

ε = 1− P
[
A′1 ∩A′2

∣∣B1 ∩B2
]
. (d)

Since A′1 and A′2 are independent,
ε = 1− P

[
A′1
∣∣B1 ∩B2

]
P
[
A′2
∣∣B1 ∩B2

]
. (e)

Since A1 is conditionally independent of B2 and A2 is conditionally independent of B1, we may rewrite the above equation as

ε = 1− P
[
A′1
∣∣B1

]
P
[
A′2
∣∣B2

]
. (f)

Aj denotes X ∈ Sj , therefore A′j denotes X /∈ Sj . Substituting the definition of A′1, A′2, B1, and B2 into the above equation
gives

ε = 1− P
[
X ∈ A±

∣∣X /∈ A
]

P
[
X /∈ B±

∣∣X /∈ B
]
. (g)
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By definition, P
[
X /∈ A±

∣∣X /∈ A
]
is the true negative rate η1 and likewise for B±. Thus,

ε = 1− η1η2 . (h)

The limiting probability distribution of the uncertain true negative rate of the union of A± and B± is thus

Nn ∼ N
(
η1η2,

η1η2(1− η1η2)
n

)
(5.5)

where the number of negatives n = u− |A ∪ B| ≤ u, which is a value between 0 and u. Since this is a limiting distribution,
presumably n is large, and as n→∞ the distribution converges in probability to τ1τ2.

Generally, the number of negatives n or positives p is not known, and so this serves a more analytic function, i.e., given
around n negatives, what true negative rate η provides the desired level of confidence that the true negative rate will not
realize a value less than some specified value?

Theorem 5.3. The union of Aω1
η1

and Bω2
η2

is a random approximate set with an expected false negative rate

ω = α1ω1η2 + α2η1ω2 + (1− α1 − α2)ω1ω2 , (5.6)

where

0 ≤ α1 = |Ar B|
|A ∪ B|

,

0 ≤ α2 = |B rA|
|A ∪ B|

,

α1 + α2 ≤ 1 .

(5.7)

See section C for a proof of theorem 5.3.
The complement of an approximate set is given by the following theorem.

Theorem 5.4. The complement of a random approximate set with a false positive rate ε and false negative rate ω is an
approximate set with a false positive rate ω and a false negative rate ε.

Proof. The false positives in an approximate set are false negatives in its complement; likewise, the false negatives in an
approximate set are the false positives in its complement set.

Remark. Consider a sequence A+
ε1
, . . . ,A+

εn . Any subsequence contains strictly less information about A. That is, positive
approximate sets are strictly additive, and as n→∞, ∩ni=1A+

εi converges almost surely to A.3 4

6 Distribution of binary classification measures
Suppose we have some other function g : 2X 7→ Y that is not a constant, then the composition g ◦ idτε is some probability
distribution over the codomain Y. That is, (g ◦ idτε ) (A) is a random variable.

Example 2 Let f : 2{0,1} 7→ {0, 1} be defined as

f(A) :=
{

1 A ∈
{
{1}, {0, 1}

}
,

0 otherwise.
(a)

The composition f ◦ id.75
.25 generates Bernoulli distribution random variables, e.g.,

(
f ◦ id.75

.25

)
({0}) ∼ BER(0.25).

We consider several classes of functions and the distributions induced by replacing the inputs with random approximate
sets, e.g., operators like set-union or binary performance measures like positive predictive value. In section 9, we consider a
more sophisticated example in Boolean search where queries map to random approximate result sets.

In the approximate set model, the distribution of random variables like the false positive, false negatives, true positives,
and true negative rates are given respectively by parameters ε, ω, τ , and η. These parameters belong to a more general class
of binary performance measures.

The above parameters are statements about the distribution of random approximate sets given corresponding objective
sets of interest, e.g.,

P
[
1Aτε (x)

∣∣ 1A(x)
]

= τ . (6.1)
The accuracy of predictions about objective sets given a corresponding approximate set is usually the more relevant

performance measure. The positive predictive value is given by the following definition.
3Likewise, for negative approximate sets, as n→∞, ∪n

i=1A
−
ωi converges almost surely to A.
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Definition 6.1. The positive predictive value is a performance measure defined as

ppv = tp
tp + fp

(6.2)

where tp is the number of true positives and fp is the number of false positives.

The positive predictive value of random approximate sets is a random variable given by the following theorem.

Theorem 6.1. Given n negatives, p positives, and a random approximate set with false positive and true positive rates ε and
τ respectively, the positive predictive value is a random variable

PPV = TPp
TPp + FPn

(6.3)

with an expectation given approximately by

ppv(τ, ε, p, n) ≈ tp

tp + fp
+
tpσ

2
fp
− fpσ2

tp(
tp + fp

)3 , (6.4)

where tp = pτ is the expected true positive frequency, fp = nε is the expected false positive frequency, σ2
tp = (1− τ)tp is the

variance of the true positive frequency, and σ2
fp

= (1− ε)tp is the variance of false positive frequency.

See section B for a proof of theorem 6.1.
We make the following observations about eq. (6.4):

1. For sufficiently large approximate sets, ppv ≈ tp/(tp + fp).

2. If ε 6= 0, as n→∞, ppv→ 0.

3. As ε→ 0, ppv→ 1.

Accuracy is given by the following definition.

Definition 6.2. The accuracy is the proportion of true results (both true positives and true negatives) in the universe of
positives and negatives, (tp + tn)/(p+ n), where tp, tn, p, and n are respectively the number of true positives, true negatives,
positives, and negatives.

The expected accuracy is given by the following theorem.

Theorem 6.2. Given p positives and n negatives, a random approximate set with an expected false positive rate ε and an
expected true positive rate τ is a random variable given by

ACCp+n = λTp + (1− λ)Nn . (6.5)

has an expected accuracy
acc(τ, ε, n, p) = λτ + (1− λ)η (6.6)

with a variance
λωτ + (1− λ)εη

p+ n
, (6.7)

where λ = p/(p+ n).

Proof. Suppose there the u elements in the universe can be partitioned into p positives and n negatives. An approximate set
S± with a false positive rate ε and false negative rate ω has an uncertain accuracy

ACCp+n = TPp + TNn

p+ n
. (a)

The expected accuracy is given by the expectation

E
[
ACCp+n

]
= E

[
TPp + TNn

p+ n

]
(b)

= p(1− ω) + n(1− ε)
p+ n

. (c)
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Figure 2: Relative frequency of positive predicitive values for several different parameterizations of the false positive and true
positive rates given n = 900 negatives and p = 100 positives.
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Noting that n/(p+ n) = 1− p/(p+ n) and letting λ = p/(p+ n),

E
[
ACCp+n

]
= λ(1− ω) + (1− λ)(1− ε) . (d)

The variance

V
[
ACCp+n

]
= V

[
TPp
p+ n

]
+ V

[
TNn

p+ n

]
(e)

= 1
(p+ n)2 V

[
TPp

]
+ 1

(p+ n)2 V[TNn] (f)

= pω(1− ω)
(p+ n)2 + nε(1− ε)

(p+ n)2 (g)

= λωτ + (1− λ)εη
p+ n

. (h)

Negative predictive value is given by the following definition.

Definition 6.3.
npv = tn

tn + fn
(6.8)

where tn and fn are respectively he number of true negatives and false negatives

The expected negative predictive value is given by the following theorem.

Theorem 6.3. Given p positives, n negatives, and a random approximate set with false positive and true positive rates ε and
τ respectively, the negative predictive value is a random variable

NPV = TNn

TNn + FNp
(6.9)

with an expectation given approximately by

npv(τ, ε, p, n) ≈ tn

tn + fn
+
tnσ

2
fn
− fnσ2

tn(
tn + fn

)3 , (6.10)

where tn = n(1− ε) is the expected true negative frequency, fn = p(1− τ) is the expected false negative frequency, σ2
tn = εtn

is the variance of the true negative frequency, and σ2
fn

= τfn is the variance of the false negative frequency.

The proof for theorem 6.3 follows the same pattern as the proof for theorem 6.1.
Youden’s J statistic is a measure of the performance of a binary test, defined as

J = tp
tp + fn

+ tn
tn + fp

− 1 , (6.11)

with a range [0, 1]. In the case of the random approximate set model, J is a random variable

J = Tp − En , (6.12)

which has an expectation
E[J] = τ − ε . (6.13)

Table 2 may be used to reparameterize an approximate set.

Example 3 Suppose we seek a positive approximate set with an expected accuracy γ. By table 2,

γ = acc(ε, ω = 0, λ) = 1− ε(1− λ) . (a)

Solving for ε in terms of γ yields the result
ε(γ, λ) = 1− γ

1− λ (b)

subject to 0 ≤ λ ≤ γ ≤ 1 and λ < 1. Under this parameterization of the positive approximate set, λ must be known (or
estimated). Note that if λ = 1 then ε(γ, λ = 1) is undefined as expected, but as λ goes to 1, ε( · ;λ) goes to 1 and γ goes to 1,
which logically follows since if there are no negatives, there can be no false positives.
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Table 2: Various expected performance measures.

measure parameter expected value
true positive rate tpr(τ) τ
false positive rate fpr(ε) ε
false negative rate fnr(τ) 1− τ
true negative rate tnr(ε) 1− ε
accuracy acc eq. (6.6)
positive predictive value ppv eq. (6.4)
negative predictive value npv eq. (6.10)
false discovery rate fdr 1− ppv
false omission rate for 1− npv

7 Uncertain rate distortions
We may not be certain about the expected false positive and true positive rates, i.e., we may only have the joint distribution
of A±, E , and W.

7.1 First-order model
The easiest case to analyze is the first-order random approximate set model. Suppose we are interested in the distribution of
A± given R has p positives and n negatives. Since we are primarily interested in the distribution of false positives and true
positives (or their corresponding rates), we consider the related random tuple 〈FPn,TPp, T , E〉 which, assuming E and T are
independent, has a joint probability density function given by

fTPp,FPn,T ,E(t, f, τ, ε) = fTPp,T (t, τ) fFPn,E(f, ε) (7.1)

where

fTPp,T (t, τ) = fTPp|T (t | τ) fT (τ) , (7.2)
fFPn,E(f, ε) = fFPp|E(f | ε) fE(ε) . (7.3)

When we marginalize over the true positives, we get the result

fTPp(t) =
∫ 1

0
fTPp|T (t | τ) fT (τ) dτ

=
∫ 1

0

(
p

t

)
τ t(1− τ)p−t fT (τ) dτ .

(7.4)

If all the probability mass for T is assigned to a particular point τ , the probability mass function simplifies to

fTPp(t) =
(
p

t

)
τ tp(1− τ)p−t , (7.5)

which is probability mass function of a binomial distribution.
The simplest kind of uncertainty is given by a disjoint set of intervals, in which the true expected rate is uniformly

distributed across the support.

Definition 7.1. An interval is a convex set of real numbers. We denote by [x] = [x, x̄] an interval with a lower-bound x and
an upper-bound x̄.

A further simplification comes from mapping the disjoint set of intervals to the smallest interval that spans all of them.

Definition 7.2. Given a disjoint interval set X , span(X ) maps to an interval with lower and upper bounds that are the lower
and upper bounds of X .

A confidence interval, for instance, may be specified in this notation. Here, however, we consider an algebra for interval
arithmetic and put it to use quantifying our ignorance about the distribution of parameters after, for instance, a union
operation.

The performance measures summarized by table 2 depend upon the false positive rate ε, false negative rate ω, and
proportion of positives λ being known. Any parameters that are not known with certainty may be replaced in the above table
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Figure 3: Relative frequency of positive predicitive values for several different parameterizations of the false positive and true
positive rates given n = 900 negatives and p = 100 positives.
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by intervals that (are assumed to) contain the expected value. As a consequence, the performance measure will also be an
interval.

Maximum uncertainty is when the parameter value is in the interval [0, 1], e.g., [λ] = [0, 1], and minimum uncertainty is
when the parameter is some value in the degenerate interval [x, x], e.g., [ε] = [.2, .2]. The more certain–the smaller the width
of the intervals–the more certain the performance measure.

When using interval arithmetic, the dependency problem can lead to overly pessimistic bounds. In our case, the formulae
are simple enough to ensure dependencies are satisfied. We show the results of an uncertain proportion of positives [λ] for
the accuracy measure in the following example.

Example 4 Suppose we wish to determine the expected accuracy given that the proportion of positives is known to be some
value in the interval [λ]. Then, the expected accuracy is some value in the interval

acc([ε], [ω]; [λ]) =
[
f(ε, ω)(1− ω) +

(
1− f(ε, ω)

)
(1− ε),

f(ω, ε)(1− ω) +
(
1− f(ω, ε)

)
(1− ε)

]
,

(a)

where f(x, y) = λ[x < y] + λ[y ≤ x]. If we have complete ignorance about λ then [λ] = [0, 1]. As a special case, if we have
complete ignorance about lambda and ω = 0 (positive approximate set), then acc([ε], 0; [0, 1]) = [1− ε, 1].

However, the expected rates may not be known, e.g., the values of α1 and α2 in eq. (5.6) may not be known. Alternatively,
we may not be interested in the expected value, but the smallest set of values such that with probability 1− α the true rate
realizes some value in the set, which is typically an interval, i.e., a confidence interval.

Intervals represent an uncertainty and they manifest themselves in two independent ways. The common notion of the
confidence interval is a product of the probabilistic model, i.e., the realized true positive rate τ̂ , which is normally centered
around the expected true positive rate τ as discussed in section 4.1. We may use interval arithmetic and replace point values
interval values, point values being a degenerate case. Basic interval arithmetic is presented in [? ].

A set sampled from A±(ε, τ) is an approximate set such that the (1 − α)% asymptotic confidence interval for the false
negative and false positive rates given respectively by

[ω] =? (7.6)

and
[ε] =? . (7.7)

By ??, A± ∪ B±, the observation A±(ε, τ) = A is an approximate set with a false negative rate

ω̂ ∈ [ω1](1− [ε2]) ∪ [ω2](1− [ε1]) ∪ [ω1][ω2] (7.8)

and a false positive rate
ε̂ ∈ 1− (1− [ε1])(1− [ω2]) . (7.9)

Equation (7.10) represents a disjoint set of intervals. However, we are only interested in the best and worst case of the
false negative rate. Thus, we map the disjoint set to a minimum width interval that contains every point in the disjoint set.

Definition 7.3. Given a set X , span(X ) maps to an interval with lower and upper bounds that are the lower and upper
bounds of X .

Theorem 7.1. The union of two approximate sets with uncertain false negative rates [ω1] and [ω2] and uncertain false positive
rates [ε1] and [ε2] is an approximate set with an uncertain false negative rate

[ω] = span([ω1](1− [ε2]) ∪ [ω2](1− [ε1]) ∪ [ω1][ω2])

=
[
min

{
ω1(1− ε2), ω2(1− ε1), ω1ω2

}
,

max
{
ω1(1− ε2), ω2(1− ε1), ω1ω2

}] (7.10)

and an uncertain true negative rate

[η] = [η1][η2]
= [η1η2, η1η2]
= 1− (1− [ε1])(1− [ε2])
= [ε1 + ε2 − ε1ε2 , ε1 + ε2 − ε1ε2] .

(7.11)
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Proof. By ??, the false positive rate of A± ∪ B± is

[ε] = [ε1] + [ε2]− [ε1] [ε2] . (a)

and the false negative rate is

[ω̂] = α1 [ω̂1] (1− [ε2]) + α2 [ω̂2] (1− [ε1])
+ (1− α1 − α2)

(
1− [ε1] + [ω̂2] [ε1]

)
,

(5.6 revisited)

where α1, α2 ≥ 0 and α1 + α2 ≤ 1. Thus, to maximize (minimize) this equation, we simply need to put all of the weight into
the largest (smallest) term.

Theorem 7.2. The complement of an approximate set with a false negative rate [ω] and false positive rate [ε] is an approximate
set with a false negative rate [ε] and false positive rate [ω].

Since any set-theoretic composition is reducible to a combination of unions and complements, we may use theorems 7.1
and 7.2 to compute the bounds for any set-theoretic composition of approximate sets. See ?? for a summary of a several
well-known operations.

Table 3: The smallest intervals that contain the false positive and false negative rates of the approximate sets that result
from the corresponding set-theoretic operations on approximate sets A±

(
[ω1], [ε1]

)
and B±

(
[ω2], [ε2]

)
.

op param interval
A± ∪ B± [ε] 1− (1− [ε1])(1− [ε2]

[ω] span([ω1](1− [ε2]) ∪ [ω2](1− [ε1]) ∪ [ω1][ω2])
A± ∩ B± [ε] span([ω1](1− [ω2]) ∪ [ε2](1− [ω1]) ∪ [ω1][ε2])

[ω] 1− (1− [ω1])(1− [ω2]
A± r B± [ε] span([ω1](1− [ε2]) ∪ [ω2](1− [ω1]) ∪ [ω1][ω2])

[ω] [ω1 + ε2(1− ω1), ω1 + ε2(1− ω1)]

A± [ε] [ω1]
[ω] [ε1]

Example 5 Suppose we have three sets A, B, and C and consider the random approximate set

Dτε =
(
A+
ε ∩ B+

ε

)
r C+

ε . (a)

The intersection of A+ and B+ is an approximate set

A+ ∩ B+
[ε] = A± ∪ B± . (b)

Table 4: The tightest intervals that contain the false positive and false negative rates of the positive or negative approximate
sets that result from the corresponding set-theoretic operations.

(a) A+([ε1]) and A+([ε2]).

op param interval
A+ ∪ B+ [ε] 1−

(
1− [ε1]

) (
1− [ε2]]

)
A+ ∩ B+ [ε]

[
ε1ε2,max(ε1, ε2)

]
A+ r B+ [ε]

[
0, ε1(1− ε2

]
[ω] [ε2]

A+ [ω] [ε1]

(b) A−([ω1]) and B−([ω2]).

op param interval
A− ∪ B− [ω]

[
ω1ω2,max(ω1, ω2)

]
A− ∩ B− [ω] 1− (1− [ω1])(1− [ω2])
A− r B− [ε]

[
0, ω2(1− ω1)

]
[ω] [ω1]

A− [ε] [ω1]
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8 Data types that model random approximate sets
A data type is a set and the elements of the set are called the values of the data type. We impose a structure on sets (data
types) by defining morphisms between them, such as operations like intersection or relations like subset. Morphisms are also
types. Any data type needs one or more value constructors, functions that map to values of the type.

The random approximate set is an abstract data type that models a set with an additional set of probabilistic axioms
described in section 3. Suppose T is a data type that overloads the member-of predicate ∈ : U × T 7→ {0, 1} and has a value
constructor ετ that is a conditional probability distribution over values of T given elements of type 2U . Data type T models
the abstract data type of the random approximate set over elements in U with a false positive rate ε and true positive rate τ
if axioms 2 and 3 are satisfied, i.e.,

P
[
x ∈ ετ(S)

∣∣ x /∈ S] = ε (8.1)

and
P
[
x ∈ ετ(S)

∣∣ x ∈ S] = τ . (8.2)

An instance of T also models a classic set by its membership predicate, i.e., two sets are equal if and only if they have the
same members. We denote that an instance of T models a set A by T (A).

Normally, two different data types that model an abstract data type are exchangable over a set of regular functions
without changing the result. However, random approximate sets are probabilistic so this strict definition of exchangability
does not capture the intended meaning. The random approximate set model is a frequentistic probability model where an
event’s probability is defined as the limit of its relative frequency in a large number of trials. Thus, we relax the definition of
exchangability and conclude that two data types that model random approximate sets (or any other probabilistic abstract
data type) should produce the same limit of the relative frequency of results in a large number of independent runs.

An important distinction must be made with respect to independent runs. The most straightforward meaning is, given any
set A ∈ 2U , at the limit, repeated applications of ετ(A) generates a sample that converges in distribution to Aτε . However,
we also wish to allow for deterministic value constructors.4

8.1 Deterministic value constructors
Value constructors compatible with the random approximate set model may come in many forms. For example, in section 9
we demonstrate an approximation of Boolean search where Boolean queries are deterministically mapped to approximate
result sets compatible with the random approximate set model.

Suppose εε : 2U 7→ T (i.e., a deterministic total function) maps sets in 2U to objects of type T that model random
approximate sets over the input. Since T models the abstract data type of the set, there is a unique bijection between T and
2U , i.e., every value in T models a specific subset of U . Thus, we may view εε as a function ετ : 2U 7→ 2U with an image

image(ετ) = { ετ(A) | A ∈ 2U } ⊆ 2U . (8.3)

Since the value constructor ετ may map multiple input sets to the same output set and some sets in the codomain may not
be mapped to by any set in the domain, ετ is (possibly) a non-surjective, non-injective function.

Definition 8.1. A σ-algebra is closed under countable unions, intersections, and complements.

The image of ετ is not necessarily a σ-algebra. However, the subsets of U that may be constructed by countable
complements, unions, and intersections for elements of the image along with the empty set ∅ and the universal set U is by
definition a σ-algebra and is denoted by σ(εε).

Since σ(εε) is a set of sets closed under unions, intersections, and complements, it is a Boolean algebra defined by the
six-tuple

(
σ(εε),∪,∩, ,∅,U

)
, e.g., set-theoretic operations over the above Boolean algebra are of the form

σ(εε) 7→ σ(ε′ε′) (8.4)

and
σ(εε)× σ(εε) 7→ σ(εε) . (8.5)

Suppose we have two Boolean algebras,
(
σ(),∪,∩, ,∅,U

)
and

(
σ(g),∪,∩, ,∅,U

)
, where ετ and g are value constructors

for approximate sets over 2U . Set-theoretic operations over both Boolean algebras is the Boolean algebra
(

Σ(ετ, g),∪,∩, ,∅,U
)

where Σ(ετ, g) = σ
(
σ() ∪ σ(g

)
. Note that σ(ετ), σ(g) ⊆ Σ(ετ, g), so Σ(f1, · · · , fn) converges to 2U as n→∞, where f1, . . . , fn

are different mappings.
4Deterministic algorithms compatible with the random approximate set model are common but frequently have an auxiliary seed which indexes

a particular approximation in a family.
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Remark. It is often trivial to implement a family of deterministic value constructors 2U 7→ T = {f1, . . . , fn} with distinct
σ-algebras where T models random approximate sets over 2U . Additionally, assuming each time an approximate set is
constructed, a “random” value constructor from 2U 7→ T is invoked, then repeated invocations on some set A ∈ 2U generates
a frequency distribution of sets that converges to A± as n→∞, e.g., “randomly” seeding a Bloom filter’s hash function. 4

How do we reconcile a deterministic value constructor ετ : 2U 7→ T with the probabilistic model? In this context, the
notion of probability quantifies our ignorance:

1. Given a set S, we do not have complete a priori knowledge about the set the value constructor maps to. The approximate
set model only provides a priori knowledge about the probability distribution S±. We acquire a posterior knowledge5

by observing ετ(S).

2. Given T (S), we do not have complete a priori knowledge about S. According to the probabilistic model, the only a
priori knowledge we have is given by the specified expected false positive and false negative rates.
We may acquire a posteriori knowledge by evaluating ετ(A) for each A ∈ 2U and remembering the sets that map to
T (S).6 However, since ετ is (possibly) non-injective, one or more sets may map to T (S) and thus this process may not
completely eliminate uncertainty. Additionally, the domain 2U has a cardinality 2|U| and thus exhaustive searches are
impractical to compute even for relatively small domains.7

Suppose U is finite. The set of deterministic value constructors 2U 7→ 2U has a cardinality (2u)(2u), and in a sense they
are all compatible with the random approximate set model.

For instance, a Bloom filter (positive approximate set) may have a family of hash function that, for a particular binary
coding of the elements of a given universal set, maps every element in the universal set to the same hash. Thus, for instance,
no matter the objective set X ⊆ U , it will map to U . The Bloom filter had a theoretically sound implementation, but only
after empirical evidence was it discovered that it was not suitable. This is an extremely unlikely outcome in the case of large
universal sets, but as the cardinality of the universal set decreases, the probability of such an outcome increases. Indeed, at
|U | = 2, the probability of this outcome is ?.

Thus, a priori knowledge, e.g., a theoretically sound algorithm, is not in practice sufficient (although for large universal
sets, the probability is negligible). The suitability of an algorithm can only be determined by acquring a posterior knowledge.

We could explore the space of functions in the family and only choose those which, on some sample of objective sets of
interest, generates the desired expectations for the false positive and false negative rates with the desired variances. Most of
them will if constructed in the right sort of way.

A family of functions that are compatible with the probabilistic model is given by observing a particular realization
X = S± and outputting X on subsequent inputs of S, i.e., caching the output of a non-deterministic process that conforms
to the probabilistic model. This is essentially how well-known implementations like the Bloom filter work, where the
pseudo-randomness comes from mechanical devices like hash functions that approximate random oracles.

The false positive rate of the approximate set corresponding to objective set X is given by

ε̂(X ) = 1
n

∑
x∈X

1ετ(X )(x) , (8.6)

where n = |X |.
Let Up denote the set of objective sets with cardinality p. The mean false positive rate,

ε = 1
|Up|

∑
X∈Up

ε̂(X ) , (8.7)

is an unbiased estimator of ε and the population variance

s2
ε = 1
|Up|

∑
X∈Up

ε̂(X ) , (8.8)

is an unbiased estimator of V[En] = ε(1− ε)/n.

Proof. We imagine that the function ετ caches the output of a non-deterministic process that conforms to the probabilistic
model. Thus, each time the function maps an objective set X of cardinality p to its approximation, the algorithm observes a

5A posteriori knowledge is dependent on experience.
6If the approximate set is the result of the union, intersection, and complement of two or more approximate sets, then we must consider the

closure.
7In the case of countably infinite domains, it is not even theoretically possible.
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realization of En = ε̂. Thus,

ε = 1
|Up|

∑
X〉∈Up

ε̂(X〉) (a)

= 1
|Up|

∑
X〉∈Up

E
[
E(i)
n

]
= ε . (b)

8.2 Space complexity
If the finite cardinality of a universe is u and the set is dense (and the approximation is also dense, i.e., the false negative
rate is relatively small), then

O(u) bits (8.9)
are needed to code the set, which is independent of p, the false positive rate, and the false negative rate.

The lower-bound on the expected space complexity of a data structure that models the random approximate set where the
elements are over a countably infinite universe is given by the following postulate.
Postulate 8.1. The information-theoretic lower-bound of a data structure that implements the countably infinite random
approximate set abstract data type has an expected bit length given by

− τ log2 ε bits/element , (8.10)
where ε > 0 is the false positive rate and τ is the true positive.

The relative space efficiency of a data structure X to a data structure Y is some value greater than 0 and is given by the
ratio of the bit length of Y to the bit length of X,

RE(X,Y ) = `(Y )
`(X)

, (8.11)

where ` is the bit length function. If RE(X,Y ) < 1, X is less efficient than Y , if RE(X,Y ) > 1, X is more efficient than Y ,
and if RE(X,Y ) = 1, X and Y are equally efficient. The absolute space efficiency is given by the following definition.
Definition 8.2. The absolute space efficiency of a data structure X, denoted by E(X), is some value between 0 and 1 and is
given by the ratio of the bit length of the theoretical lower-bound to the bit length of X,

E(X) = θ

`(X) , (8.12)

where `(X) denotes the bit length of X and θ denotes the bit length of the information-theoretic lower-bound. The closer E(X)
is to 1, the more space-efficient the data structure. A data structure that obtains an efficiency of 1 is optimal.8

The absolute space efficiency of a data structure X implementing a random approximate set of an objective set with p
elements with a false positive rate ε and true positive rate τ is given by

E(X) = −pτ log2 ε

`(X) . (8.13)

A well-known implementation of countably infinite positive approximate set is the Bloom filter[? ] which has an expected
space complexity given by

− 1
ln 2 log2 ε bits/element , (8.14)

thus the absolute efficiency of the Bloom filter is ln 2 ≈ 0.69. A practical implementation of the positive random approximate
set is given by the Perfect Hash Filter [? ], which compares favorably to the Bloom filter in may circumstances.9

In ??, we claimed that the method of moments estimator for p of an objective set given a particular realization of a random
approximation set is undefined for countably infinite universes. Suppose we have a data structure X that models random
approximate sets with an expected space complexity proportional to p, i.e., p · b(τ, ε) bits, where b is the expected bits per
positive element given a false positive rate ε and true positive rate τ . Then, given an object x of type X, an estimator of p is

p̂ = `(x)
b(τ, ε) , (8.15)

were ` is the bit length function. An expected upper-bound on the cardinality is obtained by plugging in the information-
theoretic lower-bound b(τ, ε) = −τ log2 ε bits per element.

8Sometimes, a data structure may only obtain the information-theoretic lower-bound with respect to the limit of some parameter, in which
case the data structure asymptotically obtains the lower-bound with respect to said parameter, the number of positives p being the most obvious
parameter.

9The Singular Hash Set[? ] is an example of a data structure that obtains optimality using brute-force search, so it is not practical for even
relatively small objective sets. However, its primary purpose is analytic tractability.
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8.2.1 Space efficiency of unions and differences

As a way to implement insertions and deletions, we consider the space efficiency of the set-theoretic operations of unions and
differences of approximate sets.

Let S1 = {xj1 , . . . , xjm} and suppose we wish to insert the elements xk1 , . . . , xkp into S1. If X1 is a mutable object, then
an insertion operator may be applied on X1 for each xki , i = 1, . . . , p.

Alternatively, if X1 is immutable, then we may construct another object, X2, that implements the set S2 = {xk1 , . . . , xkp},
and then apply the union function,

X1 ∪X2 . (8.16)
If we replace X1 and X2 by objects that implement positive approximate sets of S1 and S2 respectively, then by ??, the false
positive rate of the resulting approximate set is ε̂1 + ε̂2 − ε̂1ε̂2.

The space efficiency of this positive approximate set is given by the following theorem.

Theorem 8.1. Given two countably infinite positive approximate sets S+
1 and S+

2 respectively with false positive rates ε̂1 and
ε̂2, the approximate set S+

1 ∪ S
+
2 , which has an induced false positive rate ε̂1 + ε̂2 − ε̂1ε̂2, has an expected upper-bound on its

absolute efficiency given by
E(ε̂1, ε̂2|α1, α2) = log2(ε̂1 + ε̂2 − ε̂1ε̂2)

α1 log2 ε̂1 + α2 log2 ε̂2
, (8.17)

where

0 < α1 = |S1|
|S1 ∪ S2|

≤ 1 ,

0 < α2 = |S2|
|S1 ∪ S2|

≤ 1 ,

1 ≤ α1 + α2 .

(8.18)

As ε̂j → 1 or ε̂j → 0 for j = 1, 2, or (ε̂1, ε̂2)→ (1, 1), the absolute efficiency goes to 0. 10

Proof. The proof comes in two parts. First, we prove eq. (8.17), and then we prove the bounds on α1 and α2 given by
eq. (8.18).

Let X and Y denote optimally space-efficient data structures that respectively implement positive approximate sets S+
1

and S+
2 with false positive rates ε̂1 and ε̂2. By ??, their union has an induced false positive rate given by

ε̂1 + ε̂2 + ε̂1ε̂2 . (a)

The information-theoretic lower-bound of the approximate set of S1 ∪ S2 with the above false positive rate is given by

− |S1 ∪ S2| log2(ε̂1 + ε̂2 + ε̂1ε̂2) bits . (b)

Since we assume we only have X and Y and it is not possible to enumerate the elements in either, we must implement
their union by storing and separately querying both X and Y . Since X and Y are optimal, `(X) = −|S1| log2 ε̂1 and
`(Y ) = −|S2| log2 ε̂2. Making these substitutions yields an absolute efficiency ???

E = |S1 ∪ S2| log2(ε̂1 + ε̂2 + ε̂1ε̂2)
|S1| log2 ε̂1 + |S2| log2 ε̂2

. (c)

Letting
α1 = |S1|

|S1 ∪ S2|
and α2 = |S2|

|S1 ∪ S2|
, (d)

we may rewrite eq. (c) as
log2(ε̂1 + ε̂2 − ε̂1ε̂2)
α1 log2 ε̂1 + α2 log2 ε̂2

. (8.17 revisited)

In the second part of the proof, we prove the bounds on α1 and α2 as given by eq. (8.18). Both α1 and α2 must be
non-negative since each is the ratio of two positive numbers (cardinalities). If |S1| � |S2|, then α1 ≈ 0. If S1 ⊃ S2, then
α1 = 1. A similar argument holds for α2. Finally,

α1 + α2 = |S1|+ |S2|
|S1 ∪ S2|

(e)

has a minimum value by assuming that S1 and S2 are disjoint sets (i.e., their intersection is the empty set), in which case

α1 + α2 = |S1|+ |S2|
|S1|+ |S2|

= 1 . (f)

10As (ε̂1, ε̂2)→ (0, 0), the absolute efficiency depends on the path taken. In most cases, it goes to 0.
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Figure 4: Expected lower-bound on efficiency of the union of two approximate sets, neither of which can be enumerated.
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Figure 5: Expected lower-bound on efficiency of the union of two approximate sets with the same false positive rate ε, neither
of which can be enumerated.
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See ?? for a contour plot of the expected lower-bound as a function of ε̂1 and ε̂2. As ε̂1 → 0 or ε̂2 → 0, the efficiency goes
to 0.

The lower-bound on the efficiency of the union of approximate sets is given by the following corollary.

Corollary 8.1.1. Given two positive, non-enumerable approximate sets with false positive rates ε̂1 and ε̂2, their union is an
approximate set that has an efficiency that is expected to be greater than the lower bound given by

min E(ε̂1, ε̂2) = log2(ε̂1 + ε̂2 − ε̂1ε̂2)
log2 ε̂1ε̂2

. (8.19)

Corollary 8.1.2. If ε1 = ε2 = ε, then the absolute efficiency is given by

E(ε̂|α) =
(

1 + log2(2− ε̂)
log2 ε̂

)(
1− α

2

)
, (8.20)

where
0 ≤ α = |S1 ∩ S2|

|S1 ∪ S2|
≤ 1 , (8.21)

which is a monotonically decreasing function with respect to ε and α with limits given by limε̂→0 E(ε) = 1 and limε→1 E(ε) = 0.

See fig. 5 for a graphic illustration.
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8.3 code tmp
8.4 Algebra of sets
The perfect hash filter is a first-order rate-distorted set, which is a type of random approximate set whose error rates are due
to rate-distortion.

Applying binary operators like union or intersection map pairs of first-order random approximate sets to second-order
random approximate sets. If we continue in this trend, we generate higher-order random approximate sets, e.g., the union of
a first-order set and a second-order set is a third-order set.

Note, however, that complements of an n-th order set is an n-order set, i.e., the order of approximation is closed under
complements.

When take the union of a pair of first-order random approximate sets, the result is a second-order set.
c++ template < FirstOrderApproximateSet A, FirstOrderApproximateSet B > struct secondorderapproximatesetunionexprusingvaluetype = A :: valuetype;
auto contains(valuetypex)returna.contains(x)||b.contains(x);;Aconsta;Bconstb;
c++ auto fpr(secondorderapproximatesetunionexprA)//composedsetsshouldbepoints.wedecideto//spanthepointsyieldingasingleinterval.//TODO : shouldwemovethesetohigher − orderapproximatesetpaper?returnfpr(A.a)
c++ template < typename X, FirstOrderApproximateSet A, FirstOrderApproximateSet B > SecondOrderApproximate-

SetUnionExpr<X> operator+(A a, B b) return SecondOrderApproximateSetUnionExpr<X>(a,b);
c++ template < typename X, FirstOrderApproximateSet A, FirstOrderApproximateSet B > SecondOrderApproximate-

Set<X> operator*(ApproximateSet<X> a, ApproximateSet<X> b) return ( a + b);
Using type-erasure, we wrap arbitrarily complex expressions into c++ApproximateSet<X>. c++ template < typename

X, FirstOrderApproximateSet A, FirstOrderApproximateSet B > ApproximateSet<X> operator*(ApproximateSet<X> a,
ApproximateSet<X> b) return ( a + b);

9 Application: approximating Boolean search
An information retrieval process begins when a user submits a query to an information system, where a query represents an
information need. In response, the information system returns a set of relevant documents that satisfy the query.

Boolean search is an information retrieval model given by the following definition.
Definition 9.1. A document in the collection is either relevant or non-relevant to a Boolean query.

We do not specify the structure of documents since we are only interested in being able to specify documents in a collection
by some label, e.g., a file name. We specify the universal set of document labels by D and therefore a particular collection of
interest is a subset of D.

We consider queries over the Boolean algebra Q =
(
2K,∧,∨,¬, ε,K

)
, where K denotes a set of search keys, e.g., units of

information like English words.11 Without loss of generality, we transform Boolean queries over Q to the BNF

〈query〉 := “〈key〉” | ¬
(
〈query〉

)
|

∨
(
〈query〉 , 〈query〉

)
|

∧
(
〈query〉 , 〈query〉

)
〈key〉 := a key in K .

Search indexes may be used to quickly compute whether a given document is relevant to a given query. Since we are
using a Boolean search query model Q, search indexes may be efficiently represented by sets over K in the Boolean algebra
S = (2K,∩,∪, ,∅,K). In particular, let : D 7→ 2K be a function that maps documents to search indexes with a definition
given by

(d) := { k ∈ K | k is relevant to d } . (9.1)
The set of relevant documents to a query is denoted the query’s result set. The result sets form the Boolean algebra

R = (2D,∩,∪, ,∅,D).
A bijection from Q to S is given by ∧ 7→ ∩, ∨ 7→ ∪, ¬ 7→ , ε 7→ ∅, and K 7→ K. Let find : Q× 2D 7→ 2D be the function

that maps queries in Q to result sets in R by using the collection of corresponding search indexes in S,

find(q, ds) :=


(find(t,ds)) if h = ¬
∪ (find(left(t),ds), find(right(t),ds)) if h = ∨
∩ (find(left(t),ds), find(right(t),ds)) if h = ∧
{ d ∈ ds | h ∈ (d) } otherwise ,

(9.2)

where h = head(q), t = tail(q), head : Q 7→ {¬,∨,∧} ∪K maps any given query q to the next Boolean operation or key in q,
tail : Q 7→ Q maps any given query q to nested sub-queries in q, e.g., tail(∨(q1, q2)) =?, left maps f(x, y) to x and right
maps f(x, y) to y.

11This is isomorphic to the Boolean algebra
(
{0, 1}k,∧,∨,¬, 0k, 1k

)
where k = |K|.
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9.1 Random approximate Boolean search
We consider an approximation of the set-theoretic Boolean search model where the Boolean search indexes are replaced by
random approximate sets, i.e., : D 7→ 2K is replaced with σ : D 7→ 2K±. We denote the transformed find function by findσ as
opposed to the objective function find.

This replacement induces random approximate result sets as given by the following theorem.

Theorem 9.1. findσ is an approximation of find where findσ(q, ds) is a random approximate set of find(q, ds) for all q
in Q and all ds ∈ 2D.

Proof. An approximate search index Sεω is relevant to a key x if the key x tests positive in it. A false positive occurs if the
key x is not in S but is in S±, which occurs with some probability ε ≥ 0. A false negative occurs if a key x is in S but is not
in S±, which occurs with some probability ω ≥ 0.

We have established that the result sets of a single atomic key are approximate result sets. We may now apply the
set-theoretic results in ?? to implement the full set-theoretic model for approximate sets.

Continue proof here.

findσ is a function and therefore produces the same output (result set) for the same input (query). However, it still obeys
the axioms of the random approximate set model since as described in ??.

Example 6 Suppose the search indexes are positive approximate sets each with a false positive rate ε. A common type
of Boolean query is the intersection (conjunction) of atomic keys. Consider a conjunctive query of k keys, x1, . . . , xk. The
result set R+ ({x1} ∩ · · · ∩ {xk}

)
= find

(
x1 ∪ · · · ∪ xk

)
is a positive approximate set with an uncertain false positive rate

[εk] = [εk, ε].

Proof. Let the approximate result set for key xj be denoted by R+
xj . The result set is given by

R+
X =

k⋂
j=1
R+
j . (a)

By ??, R+
j has a false positive rate ε for j ∈ [1, . . . , k]. By ??, R+

1 ∩R
+
2 has a false positive rate [ε2, ε]. Similarly,(

R+
1 ∩R

+
2

)
∩R+

3 = R+
1 ∩R

+
2 ∩R

+
3 (b)

has a false positive rate [ε3, ε]. Continuing in this fashion, we see that R+
X = R+

1 ∩· · ·∩R
+
k has a false positive rate [εk, ε].

To quantify the performance measure of the information retrieval system, we may use the binary classification results in
section 6.

A Proof of corollary 4.2.2
To say that the sequence E1, E2, . . . converges almost surely to ε means that

P
[

lim
n→∞

En = ε

]
= 1 . (A.1)

By corollary 4.2.2, given countably infinite negatives, a random approximate set with a false positive rate ε is certain to
obtain ε.

Proof. Hoeffding’s inequality[? ] provides that FPn is concentrated around its mean nε as given by

P
[
(ε− ε)n ≤ FPn ≤ (ε+ ε)n

]
≥ 1− 2 exp

(
−2ε2n

)
, (a)

where ε > 0. We are interested in the limiting probability

lim
n→∞

Pr
[
(ε− ε)n ≤ FPn ≤ (ε+ ε)n

]
=

lim
n→∞

{
1− 2 exp

(
−2ε2n

)}
= 1 .

(b)

As ε goes to 0, limn→∞ FPn converges almost surely to εn and therefore limn→∞ FPn/n converges almost surely to ε.
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B Proof of theorem 6.1
Given p positives and n negatives, by ?? an approximate set with a false positive rate ε and a false negative rate ω has an
expected precision given approximately by

ppv(ω, ε;n, p) ≈ tp

tp + fp
+
tpσ

2
fp
− fpσ2

tp(
tp + fp

)3 , (?? revisited)

where tp = pτ is the expected number of true positives, fp = nε is the expected number of false positives, σ2
tp = pωτ is the

variance of the number of true positives, and σ2
fp

= nεω is the variance of the number of false positives.

Proof. The positive predictive value is a random variable given by

TPp
TPp + FPn

. (a)

We are interested in the expected positive predictive value,

ppv(ε, τ) = E
[

TPp
TPp + FPn

]
. (b)

This expectation is of a non-linear function of random variables, which is problematic so we choose to approximate the
expectation.

Let the positive predictive value function be denoted by

f(tp, fp) = tp
tp + fp

, (c)

where tp is the number of true positives and fp is the number of false positives. We approximate this function with a
second-order Taylor series. The gradient of f is given by

∇f(tp, fp) = 1
(tp + fp)2

[
fp
−tp

]
(d)

and the Hessian of f is given by

H(tp, fp) = 1
(tp + fp)3

[
−2fp tp − fp
tp − fp 2tp

]
. (e)

A linear approximation g of f that is reasonably accurate near the expected value of TPp, denoted by tp, and the expected
value of FPn, denoted by fp, is given by

g(tp, fp) = f
(
tp, fp

)
+∇f(tp, fp])ᵀ

[
tp − tp
fp − fp

]
+ 1

2

[
tp − tp
fp − fp

]ᵀ
H(tp, fp)

[
tp − tp
fp − fp

]
. (f)

As a function of random variables TPp and FPn, g
(
TPp,FPn

)
is a random variable. Since E

[
TPp − tp

]
= 0 and E

[
FPp − fp

]
=

0, we immediately simplify the expectation of g to

E
[
g(TPp,FPn)

]
= tp

tp + fp
+ E[A]

(tp + fp)3
(g)

where

A = 1
2

[
TPp − tp
FPn − fp

]ᵀ [
−2fp tp − fp
tp − fp 2tp

][
TPp − tp
FPn − fp

]
. (h)

Multiplying the right column matrix by the Hessian matrix in A results in

A = 1
2

[
TPp − tp
FPn − fp

]ᵀ −2f
(
TPp − tp

)
+
(
tp − fp

)(
FPn − fp

)(
tp − fp

) (
TPp − tp

)
+ 2tp

(
FPn − fp

)
 (i)

Multiplying the left column matrix by the right column matrix in A results in

A = −fp
(
TPp − tp

)2 +
(
tp − fp

) (
TPp − tp

) (
FPn − fp

)
+ tp

(
FPn − fp

)2
. (j)

27



As a linear operator, the expectation of A is equivalent to

E[A] = −fp E
[
TPp − tp

]2 +
(
t− fp

)
E
[(

FPn − fp
) (

TPp − tp
)]

+ tp E
[
FPn − fp

]2
. (k)

By definition, E
[
TPp − tp

]2 is the variance of TPp, E
[
FPn − fp

]2
is the variance of FPn, and E

[(
FPn − fp

) (
TPp − tp

)]
is

the covariance of TPp and FPn, which is 0 since they are independent. Making these substitutions results in

E[A] = tp V[FPn]− fp V
[
TPp

]
. (l)

Substituting this result into eq. (g) yields

E
[
g(TPp,FPn)

]
= tp

tp + fp
+
−fp V

[
TPp

]
+ tp V[FPn]

(tp + fp)3
(m)

By theorem 4.1, FPn is binomially distributed with a mean nε and a variance nεη and by corollary 4.4.2, TPp is binomailly
distributed with a mean pτ and a variance pωτ .

C Proof of theorem 5.3
Given A±(ε1, ω) and B±(ε2, ω2), their union is an approximate set with a false negative rate given by

ω = α1ω1(1− ε2) + α2ω2(1− ε1)
+ (1− α1 − α2)ω1ω2 ,

(5.6 revisited)

where

0 ≤ α1 = |S1 r S2|
|S1 ∪ S2|

,

0 ≤ α2 = |S2 r S1|
|S1 ∪ S2|

,

α1 + α2 ≤ 1 .

(5.7 revisited)

Proof. Suppose we have two sets S1 and S2. The false negative rate ω is a probability conditioned on a positive in the union
of sets S1 and S2 being a negative in the union of approximate sets S1 and S2.

The set of possible false negatives is the set of positives, S1∪S2, which is equivalent to the union of the disjoint sets S1∩S2,
S1 r S2 and S2 r S1.

The false negative rate is equivalent to ratio of the expected number of false negatives to the maximum possible false
negatives |S1 ∪ S2|. Since they are disjoint, we may consider each independently to calculate the expected total number of
false negatives.

Let A1 denote the event X ∈ S1, A2 denote X ∈ S2, B1 denote X ∈ S1, and B2 denote X ∈ S2. Suppose we randomly
select an element from S1∩ S2. The probability that X is a negative in S1 ∪ S2 given that it is positive in S1 ∩ S2 is given by

ω1∩2 = P
[
(A1∪A2)′

∣∣B1∩B2
]
. (a)

By De Morgan’s law, (A1∪A2)′ ≡ A′1 ∩A′2. Making this substitution results in

ω1∩2 = P
[
A′1 ∩A′2

∣∣B1∩B2
]
. (b)

Since A1 and A2 are independent events, by the rules of probability

ω1∩2 = P
[
A′1
∣∣B1 ∩B2

]
P
[
A′2
∣∣B1 ∩B2

]
. (c)

Since A1 is independent of B2 and A2 is independent of B1, by the rules of probability

ω1∩2 = P
[
A′1
∣∣B1

]
P
[
A′2
∣∣B2

]
. (d)

By definition, P
[
A′j

∣∣∣Bj] is the false negative rate ωj . Making this substitution yields

ω1∩2 = ω1ω2 . (e)
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There are |S1 ∩ S2| elements in S1 ∩ S2, where each is an independent Bernoulli trial. Thus, there are expected to be

|S1∩ S2|ω1∩2 = |S1∩ S2|ω1ω2 (f)

false negatives in S1 ∩ S2.
Suppose we randomly select an element from S1 r S2. The probability that X is a negative in S1 ∪ S2 given that it is a

positive in S1 r S2 is given by
ω1∩2 = P

[
A′1 ∩A′2

∣∣B1 ∩B′2
]
. (g)

Since A1 and A2 are independent events, this may be rewritten as

ω1∩2 = P
[
A′1
∣∣B1∩B′2

]
P
[
A′2
∣∣B1 ∩B′2

]
. (h)

Since A1 is independent of B2 and A2 is independent of B1, this may be rewritten as

ω1∩2 = P
[
A′1
∣∣B1

]
P
[
A′2
∣∣B′2] . (i)

By definition, P
[
A′1
∣∣B1

]
is the false negative rate ω1 and P

[
A2
∣∣B′2] is the false positive rate ε2. Thus,

ω1∩2 = ω1(1− ε2) . (j)

There are |S1 r S2| elements in S1 r S2, where each is an independent Bernoulli trial. Thus, there are expected to be

|S1 r S2|ω1∩2 = |S1 r S2|ω1(1− ε2) (k)

false negatives in S1 r S2. A similar argument follows for S2 r S1 where there are expected to be

|S2 r S1|ω2(1− ε2) (l)

false negatives.
The false negative rate is given by the ratio of the total expected number of false negatives given by eqs. (f), (k) and (l)

to the total number of possible false negatives |S1∪ S2|, which is given by

ω = |S1\ S2|
|S1∪ S2|

ω1(1− ε2) + |S2\ S1|
|S1∪ S2|

ω2(1− ε1) + |S1∩ S2|
|S1∪ S2|

ω1ω2 . (m)

If we let

α1 = |S1\ S2|
|S1∪ S2|

and α2 = |S2\ S1|
|S1∪ S2|

, (n)

then
1− α1 − α2 = |S1∩ S2|

|S1∪ S2|
. (o)

Making these substitutions into eq. (m) yields the result

ω = α1ω1(1− ε2) + α1ω2(1− ε1)+
(1− α1 − α2)ω1ω2 .

(p)

D Sampling distribution of arbitrary functions
TODO: add generative model as an algorithm for approximate sets? Add C++ implementation of the model? Do some
simulations to see how rapidly it converges to the normal? TODO: feed in something like ppv function and see how well it
matches the solution given in that one section. etc.

Suppose we have an objective function f : 2X1 × · · · × 2Xq 7→ Y, and we are interested in evaluating the loss when we
replace one or more of the objective input sets with particular corresponding random approximate sets. The result of this
substitution, as previously described, is a probability distribution over Y.

The probability distribution of random approximate sets are precisely given; therefore, we may estimate the distribution
of any function of random approximate sets by generating the random approximate sets and applying the function of interest.

Consider the m-by-q matrix where the (i, j)-th element is the random approximate set Ai,j(τj , εj) such that they are all
independely distributed and Ai,j for i = 1, . . . ,m are also identically distributed. If we apply g to each row of the matrix,

Yi = g
(
Ai,1, . . . ,Ai,q

)
(D.1)
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for i = 1, . . . ,m, we generate m i.i.d. random elements Y1, . . . ,Ym.
If Y is a measure space (discrete or continuous), consider the random variable

Ym = 1
m

m∑
i=1

Yi . (D.2)

If Y1 has a well-defined mean and variance, then by the central limit theorem

lim
m→∞

Ym (D.3)

converges in distribution to a normal with a mean E[Y1] and a variance V[Y1]/m.
A general approach to estimating Ym is given by generating a large sample of matrices and applying the function g to

each to generate a large sample from Y1.
We provide an implementation of the generative model and a tool set that permits one to analyze various properties of

the distribution of the function of interest.
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