
The random approximate values over algebraic types

Alexander Towell
atowell@siue.edu

Abstract

We define the semantics of random approximate values over algebraic data types.

Contents
1 Introduction 1

2 Random approximate algebraic data types 2

3 Primitive approximate values 3
3.1 Void type . 3
3.2 Unit type . 3
3.3 Sum types . 3
3.4 Product types . 3
3.5 Exponential types (functions) . 3

4 Random approximate Boolean algebra 4

5 C++ implementation 5
5.1 Approximate value monad . 7
5.2 Type-erasure . 9

1 Introduction
The primary mechanism by which a value is an approximation is given by the random approximate
map model. If a first-order random approximate map of type X ε7→

ω
Y takes in an exact value X

then it maps to a random approximate value yω
ε of type Y .

We denote that the distribution of values over a type X take on random approximations with
X±. The type is still the same, only the values are different with respect to some objective standard,
e.g., if f maps a value a to b, then ...

A type is a set and the elements of the set are called the values of the type.
These values are approximate values if, according to some objective function they should be x

but take on a range of possible values according to the random approximate value model.
An abstract data type is a type and a set of operations on values of the type. For example, the

integer abstract data type is defined by the set of integers and standard operations like addition
and subtraction. A data structure is a particular way of organizing data and may implement one
or more abstract data types.

1

2 Random approximate algebraic data types
Suppose we have a function g : B 7→ B.

The random approximate value type Bω
ε is a monad. If we provide it as input to g, we git a

random approximate value type as output.
That is, the function g is lifted to the function type Bω

ε 7→ B±, denoted by g±. The output B±
is a random variable, in particular, it is a first-order random approximate value type.

To compute its false positive and false negative rates, we simply have to compute the following.
Suppose it is given the true value is 0. Then, by definition, Bω

ε realizes 0 with probability 1− ω
and 1 with probability ω. Since g is a function of a random variable, it is also a random variable
(unless it is constant). So, the output is g(0) with probability 1 − ω and g(1) with probability ω.
That is, it has a conditional probability mass function given by

p(b|0) =

1− ω if b = g(0)
ω if b = g(1) .

(1)

Alternatively, assume it is given true value is 1. Then, by definition, Bω
ε realizes 0 with probability

ε and 1 with probability 1− ε and therefore the output is a random variable O that models B± that
realizes g(0) with probability 1 − ω and g(1) with probability ω with the conditional probability
mass function given by

pO(b|1) =

ε if b = g(0)
1− ε if b = g(1) .

(2)

The random approximate map is the exponential type.
Other types may be generated from this type.
A type is a set and the elements of the set are called the values of the type. In programming

languages, composite types are typically composed in two ways, the sum type and the product type.
The product type is a Cartesian product of types (sets).

For instance, a product type may the Cartesian product of integer and Boolean types, Z ×
{0, 1}. In the C++ family of programming language, this product type may be represented by
pair<int,bool>.

Since it may be inconvenient to refer to member types by their respective tuple indices, pro-
gramming languages typically allow the indices to be labeled. In C++, keywords like struct and
class are commonly used to provide named product types.

A data type may be thought of as a product type with invariants, or constraints on which values
member types may be assigned. Thus, it may be thought of as a relation or correspondence over the
product type. In many cases, this may make approximate relations unsuitable for representing data
types, e.g., a tuple that violates one or more of the invariants may be generated from an objective
value of the data type.

However, if an approximate relation does violate the invariants, it can simply be considered
invalid. In this case, we may pose questions like, what is the probability that an approximate data
type generates an invalid result?

P
[
X1
±
]

(3)

An abstract data type is a type and a set of operations on values of the type. For example, the
integer abstract data type is defined by the set of integers and standard operations like addition
and subtraction. A data structure is a particular way of organizing data and may implement one
or more abstract data types.

2

3 Primitive approximate values
Here are a basic list of primitive algebraic data types and operations on types.

These are first-order approximate types since t

3.1 Void type

The most primitive type is the empty set type, denoted by Void. There are no elements in the empty
set and therefore it is not possible to construct values of this type. There is only one function in
the set Void 7→ X, known as the absurd function since it can never be invoked. Since Void has no
values, Void± is equivalent to Void.

Void± is necessary to complete the algebra of algebraic data types, but serves only a theoretical
purpose.

3.2 Unit type

The unit type, denoted by Unit, is isomorphic to any set with only a single element, i.e., any singleton
set. The set Unit 7→ X has a cardinality |X| and the set X 7→ Unit has a cardinality 1. If we are
talking about partial functions, then X 7→ Unit has cardinality 2X.

The set Unit 7→ Unit has a cardinality of 1, which is the identity function id : Unit 7→ Unit.
The approximate unit type Unit± is necessary to complete the algebra, but given a void Unit

type, similar to the Void type there is no uncertainty about its value, i.e., Unit± is equivalent to
Unit.

In addition, if there is some function f : Unit 7→ X its approximate analog is f± : Unit 7→ X, which
models an approximate constant.

3.3 Sum types

A sum type X + Y is the disjoint union of types X and Y . The first-order approximate sum type
(X + Y)± is an approximate of the type X + Y .

The higher-order sum type is different, e.g., X± + Y ± is a higher order sum type, as is X± + Y

and
(
X± + Y ±

)±
is even a higher order.

If we replace X and Y by X± and Y ±, we have a sum type X± + Y ±.
Values of these types are naturally constructed from approximate maps that map to the type

X + Y .

3.4 Product types

A product type X × Y is the Cartesian product of types X and Y . If we replace X and Y by X±
and Y ±, we have a product type X± × Y ±.

Values of these types are naturally constructed from approximate maps that map to the type
X + Y and form a random approximate set over the type X × Y .

3.5 Exponential types (functions)

These have already been discussed. Random approximate maps are the same thing as random
approximate exponential types.

3

When we generate a set of approximate value types and a set of approximate functions over those
value types and compose them together to generate a program, we may consider this composition
to be an approximate program.

TODO: A partial function is not defined on entire domain. We allow elements not in the
preimage, i.e., not defined by the partial function, to either correctly map to nothing or, map to
some other element in the codomain. The false mapping rate εy for element y may be specified
explicitly, i.e.,

P
[
f(x) = y

∣∣ x /∈ dom(f)
]

= εy , (4)

and the total false mapping rate is∑
y∈codom(f)

P
[
f(x) = y

∣∣ x /∈ dom(f)
]

= ε , (5)

by the fact that each outcome is mutually exclusive (a function f maps to only one element).
Alternatively, ∑

y∈codom(f)
P
[
f(x) 6= y

∣∣ x /∈ dom(f)
]

= 1− ε = η . (6)

Example 1 Suppose we have a predicate function f : X 7→ Bool, i.e., set indicator. Then, we
may construct a partial function from f with an approximate map over those elements that return
true. If we specify a false mapping rate εfalse, this predicate is isomorphic to an approximate set
over X with a false positive rate ε = εfalse.

An optimal approximate map obtains the information-theoretic lower-bound on the expected space
complexity, −1.44 log2 ε bits per positive element.

While a random approximate set is in practice simpler to implement, theoretically an optimal
approximate map is both fully generalized (for any function over any domain and codomain) and
obtains the same space efficiency.

The obfuscated approximate map has the same characteristics, and the optimal implementation
is a black box that is able to increase obfuscation power for less space efficiency. WORK THIS OUT
EXACTly, and move all of this out of the example env of course.

Remark. NOTE: Clarify: we call a value an approximate value when it should be x but there is a
probability it is something else due to the approximate map or some other noisy process. 4

Most approximate maps are black boxes. They introduce an approximation error, and in
addition, the inputs may also have an approximation error. At that point, the values being mapped
to are higher-order random approximate values.

4 Random approximate Boolean algebra
A general purpose The primitive operations in the Boolean algebra, and,or, and negate,

The approximate value type Bool± discussed in ?? can be composed with algebraic types like
the product type to construct any other value type.

We consider a generalization of this Boolean algebra given by six-tuple(
+
−Bn, and±, or±, negate±,+

−1n,+
−0n

)
, (7)

where the operators are bit-wise operators.

4

The values of n bits are isomorphic to any value type that has a cardinality of 2n and as a Boolean
algebra. For instance, we could implement approximate sets with a complete implementation of
set-theoretic operations on them over any universe of n elements.

An exponential type X 7→ Y is the set of functions from domain X to codomain Y . If we replace
X and Y by X± and Y ±, we have an approximate exponential type X± 7→ Y ±, e.g., if f : X 7→ Y ,
then an approximate representation of f is f± : X± 7→ Y ±.

TODO: make an approximate value monad! Carry the approximation error information, make
it a simple wrapper with some additional info.

If it is not important that X or Y be themselves oblivious types, then we have the represntation
of the functions as oblivious, but the inputs and outputs can be plain.

NOTE: this is the case for many things not just exponential types. Still need to grapple with
this, maybe still dealing with the approximation over elements rather than the approximation of
universe thing.

Maps, also known as partial functions, are rules that map inputs to outputs. Let f : X 7→ Y be
a partial function that maps inputs from the domain X to outputs from the codomain Y.

There are three orthogonal ways in which f may leak information.
Let the computational basis (a minimal set of functions) for values of type X be denoted by the

overload set F, where any other function that depends on X is some composition of the elements of
F and elements from other dependent computational bases.

As a function of X, f depends on a subset L of F. If we substitute X by some object type that
models X, to be compatible with f, at minimum it must overload the set of functions in L.

Consider a partial function f : X1 ×X2 · · · ×Xn 7→ Y1 × · · · × Ym and suppose we replace X1
by X±1 , an approximate value type. Then, we denote this function by f± : X1

± ×X2 · · · ×Xn 7→
Y1
± × · · · × Ym

±.
There are two approaches to this.

5 C++ implementation
In programming languages, composite types are typically composed in two ways, the sum type and
the product type. The product type is a Cartesian product of types (sets).

For instance, a product type may the Cartesian product of integer and Boolean types, Z ×
{0, 1}. In the C++ family of programming language, this product type may be represented by
pair<int,bool>.

Since it may be inconvenient to refer to member types by their respective tuple indices, pro-
gramming languages typically allow the indices to be labeled. In C++, keywords like struct and
class are commonly used to provide named product types.

A data type may be thought of as a product type with invariants, or constraints on which values
member types may be assigned. Thus, it may be thought of as a relation or correspondence over the
product type. In many cases, this may make approximate relations unsuitable for representing data
types, e.g., a tuple that violates one or more of the invariants may be generated from an objective
value of the data type.

However, if an approximate relation does violate the invariants, it can simply be considered
invalid. In this case, we may pose questions like, what is the probability that an approximate data
type generates an invalid result?

Viewing a type as a set, most programming languages have primitive types like integers, Booleans,
and characters. In C++, these are respectively denoted by int, bool, and char with cardinalities
given respectively by 232, 28, and 21. Any type needs one or more value constructors to construct

5

objects that model values in that type. For instance, in C++ the value that denotes the Boolean
value of true is constructed with the syntax true.

The unit type is special singleton set with a single value, i.e., a cardinality of 20. In C++, the
confusing notation of void denotes the unit type (and the single value).

Remark. The absurd type is a special type with zero values, i.e., the empty set. Since there are
no values in the absurd type, no values of this type can be constructed. There is no primitive absurd
type in C++. 4

A product type is the n-fold Cartesian product of zero or more types where the zero-th product
is the unit type. For instance, in C++, struct { char y, bool z } is a named product type and
tuple<char,bool> is the unamed counterpart, where both are product types char × bool. The
cardinality of this product type is 28 · 21 = 512. One way a particular value of this product type
may be constructed is tuple<char,bool>('a', true).

The values of a sum type are typically grouped into several classes, called variants. The set
of all possible values of a sum type is the disjoint union of the sets of all possible values of its
variants. For instance, in C++, variant<char,bool> is the sum type char + bool, which has
a cardinality of 28 + 21 = 258. One way a particular value of this sum type may be constructed
is variant<char,bool>('1', true). A particularly useful type in C++ is optional<X>, which
conceptually models the sum type X + void where void denotes the variant “not a value of type X.’

Remark. This is not valid C++ syntax, even though the unit type value should be first-class. 4

The cardinality of the optional<X> is the cardinality of X plus 1. We label the value in this
singleton nothing and may test whether a particular value is either nothing or alternatively a value
in X.

Exponential types are functions. In C++, [](tuple<char,bool>) -> bool is the set of func-
tions char × bool 7→ bool, which has a cardinality of 2512. Usually, a more convenient syntax is
used, like [](char,bool) -> bool. The constant true function of the exponential type char ×
bool 7→ bool may be constructed with the definition [](char,bool) -> bool { return true; }.

Remark. The exponential type [](X x) -> void is of little practical value and, in C++, usually
denotes a procedure that causes side-effects like writing to IO. 4

Recall that any subset of a set corresponds to a relation. Types are subsets of the algebraic
types where subsets are defined by invariants. We may compose primitive types to specify a variety
of compound types.

Example 2 Rationals may be implemented as a product type of two integers,

using Rational = tuple<int,int>,

where the first and last elements of the tuple represent the numerator and denominator respectively.
If the invariant is that the denominator is not 0, then a value constructor rational : int × int
7→ optional<Rational> that takes a numerator and denominator and outputs either a rational or,
if the invariants are violated, nothing, is given by ??.1

optional<Rational> rational(int num, int denom)
{

1Alternatively, the value constructor can be a partial function rational : int × int 7→ Rational that is undefined
for input 〈x , 0〉 for any x ∈ int.

6

if (denom == 0)
return {}; // Return the value that denotes nothing.
return tuple<int,int>(num, denom);

}.

The expected operators on rationals, like addition operator+(Rational,Rational) -> Rational,
may be implemented so that Rational models the concept of rationals.

The Rational type is a subset of the product type tuple<int,int> and is thus a binary relation
on Z× Z.

Remark. We implemented Rational as a product type tuple<int,int> and a value constructor
rational for pedagogical reasons, but generally programming structures like class are utilized since
they facilitate important concepts like encapsulation. 4

Each of these types and operators has a corresponding random approximation, e.g., the expo-
nential type is just a random approximate map, and the relations that define types are just random
approximate relations with deterministic properties that model the invariants.

The invariants may not be easy to satisfy, and so a random approximation relation of the
corresponding type may not be practical. However, when the invariants can be satisfied, we may
implement random approximate algebraic data types of the algebraic data types, e.g., we can compose
random approximate algebraic data types as before to construct compound random approximate
data types of the corresponding compound algebraic data type.

This may not seem particularly useful, but it permits space-efficient representations and, more-
over, concepts like oblivious algebraic data types may be based on it with some notion of closure.

5.1 Approximate value monad

Talk about lifting functions.
Suppose we have a function f : X 7→ Y .
and we apply f to an approximate value of type X, denoted by a(X),
f a(f) : X ε7→

ω
Y .

The approximate value parameterized by X, denoted by approx<X>, is a monad type similar to
the maybe monad discussed previously, except significantly more complicated if fully implemented.2

The general type of the approximate value monad is simply defined as

template <typename X> struct approx<X> {}

which has a computational basis given by the following overload set.
Given an approximate value of type X, its false positive rate is given by

template <typename X>
auto fpr(approx<X> x) { /* implementation */ },

its false negative rate is given by

template <typename X>
auto fnr(approx<X> x) { /* implementation */ },

2We may choose the trivial implementation that just tags it as an approximate value and let that bit of information
carry through.

7

its value is given by

template <typename X>
auto value(approx<X> x) { /* implementation */ },

and its conditional probability mass function is given by

template <typename X>
auto pmf(approx<X> x, X true_value) { /* implementation */ }.

Note that the false positive and false negative rates are the result of using the distance function
d(a, a) = 0 and otherwise d(a, b) = 1, a 6= b, to calculate the expected loss given respectively the
negative (where d evaluates to 1 with respect to some ground truth) and positive (where d evaluates
to 0) subsets of X.

If we give it a loss function, we may estimate its loss.
For particular value types, we specialize this template.

template <> struct approx<bool>
{

double fpr;
double fnr;
bool value;

}

which has a computational basis given by

auto fpr(approx<bool> x) { return x.fpr; },
auto fnr(approx<bool> x) { return x.fnr; },
auto value(approx<bool> x) { return x.value; }.

The function fmap : (bool 7→ bool)× approx<bool> 7→ approx<bool> is defined as

auto amap(function<bool(bool)> f, approx<bool> x)
{

auto fnr = f(true);
auto fpr = f(false);

return approx<bool> { fpr, fnr, f(value(x)) };
}

If we compose functions to construct an algorithm (or program), then if some of the values
(e.g., functions or Boolean values) are replaced by approximate values, the algorithm becomes (in
general) an approximate algorithm and we may deduce its false positive and negative rates as we
did previously through, say, function composition.

If the algorithm includes branching, the algorithm is still an approximate algorithm, but in order
to infer the false positive and false negative rate, we must go down all branches, which is in general
not be tractable. However, we could estimate the result using Monte-carlo simulation.

The approximate Boolean value is straightforward since Boolean types are the natural predicate
return type. More importantly, there are only two values of this type.

8

5.2 Type-erasure

The fact that we are dealing with specific approximate types may be erased into some approximate
type abstract data type that hides the concrete data type. It may be further erased to just a type,
e.g., fω

ε may be erased to f± which may be erased to f. TODO: convert to types not particular
elements in the type

References

9

	Introduction
	Random approximate algebraic data types
	Primitive approximate values
	Void type
	Unit type
	Sum types
	Product types
	Exponential types (functions)

	Random approximate Boolean algebra
	C++ implementation
	Approximate value monad
	Type-erasure

